

Profiling of phenolic compounds and antifibrotic activity of

Tamarix nolitica (Tamaricaceae) from different habitats: A comparative study

A Thesis Submitted By

Ahmed Mohammed Mohy Eldin Abdelhamied Abo Sekkien

Bachelor Degree of Pharmaceutical Sciences, 2012, Ain Shams University

In Partial Fulfillment of the Master Degree in Pharmaceutical Sciences

(Pharmacognosy)

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
2019

Under Supervision of

Prof. Dr. AbdelNaser B.Singab

Professor of Pharmacognosy& Vice president of Ain Shams University for Research and Postgraduate Affairs

Ass. Prof. Dr. Sherif S.Ebada

Associate professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University

Dr. Noha Swilam

Lecturer of Pharmacognosy, Faculty of Pharmacy, The British University In Egypt

I Dedicate this work to

the soul of my grandfather

grandmother

to my lovely parents

and beautiful wife

Acknowledgement

All praise is due to **Allah**, Most Merciful, the Lord of the Worlds for giving me the chance, strength and the ability to complete this work.

I would like to express my deepest gratitude. Sincere and profound appreciation to the following people who significantly contributed to the work done in this thesis:

Prof. Dr. AbdelNaser B.Singab, Professor of Pharmacognosy & vice president of AinShams University for research and postgraduate affairs, for his valuable and constructive suggestions during the planning and the development of this research work. Words are not enough to express my great appreciation to him for his kind supervision, valuable advice and comments, generous support, sincere guidance and continuous enthusiastic encouragement during this study, setting an example to what a dedicated professor, scientist and advisor should be. His constructive criticism and suggestions helped me a lot to improve this work through the experimental investigations as well as writing and revising the thesis. I am truly blessed to be one of his loyal students.

Dr. Noha Swilam, Lecturer of Pharmacognosy, Faculty of Pharmacy, The British University In Egypt (My older sister and supervisor), for suggesting the topic for this thesis. Her extraordinary academic support and encouragement have been of great value for me. Her understanding and kind personality have provided a good basis for the present work. I would like to thank her for her efforts in supervising this work and revising the thesis.

- **Ass. Prof. Dr. Sherif S.Ebada**, Associate professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for his efforts, scientific and academic guidance as well as scientific advice through the work, writing and revising the whole thesis.
- **Dr. Ahmed Esmat**, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University. for his great support, directions and guidance throughout the process of planning and performing the antifibrotic study, data analysis and results interpretation.
- **Dr. Ahmed El Khatib** For his valuable participation in the process of the LC/MS/MS profiling and for his extra efforts in throughout the process of publishing the paper.
- **Prof. Dr. Nahla A. Ayoub,** Professor of Pharmacognosy, Umm Al Qura University (My professor and second mother) for her continuous personal and scientific advice, valuable discussions, variable knowledge and extensive efforts throughout this thesis.
- **Prof. Dr. Mohy ElMazar**, Professor of Pharmacology and toxicology and the Dean of the faculty of pharmacy, British University in Egypt, for his unceasing support on both the academic and scientific fronts, and for providing whatever that is necessary for creation and maintaining a research enriched environment at the faculty of pharmacy of the British University in Egypt.

Finally, I would like to express my deep appreciation to all colleagues in the **BUE Pharmacognosy department** and room 310 for their continuous encouragement and help.

Ahmed Mohammed Abo Sekkien

ABSTRACT

Tamarix nilotica (Ehrenb.) Bunge (Tamaricaceae), an indigenous plant to the Middle East region, is well-known as a medicinal plant for treating many human ailments. The current study aimed at exploring the polyphenols profile of the alcohol soluble fraction of *T. nilotica* aqueous extracts and assessing it's *in vivo* antifibrotic activity together with investigating the underlying mechanisms for such activity. In addition to unravel the impact of quantitative difference of sulphated polyphenols content on the antifibrotic activity of *T. nilotca* grown in two different habitats Egypt (ETN) and Saudi Arabia (STN). Polyphenols profiling of T. nilotica extracts was performed using HPLC-HRESI-MS-MS. The major polyphenol components included sulphated polyphenols; representing a total of 92.6 % in STN to 60.49 % in ETN. The antifibrotic activity was evaluated through carbon tetrachloride-induced liver fibrosis in rats. Biochemical evaluations revealed that both extracts ameliorated the increased levels of hepatic aminotransferases, lipid peroxidation, hydroxyproline, tumor necrosis factor- α (TNF- α) and cyclooxygenase-2 (COX-2). In addition, both extracts reduced the over expression of α -smooth muscle actin (α -SMA) and nuclear factor kappa b (NF-κB) which were measured immunohistochemichally. Moreover, ETN and STN both restored the reduced catalase activity (CAT) and the depleted hepatic glutathione (GSH) content. Histopathological imaging undoubtedly

confirmed such results. In conclusion, *T. nilotica* polyphenols rich extract exhibited potential antifibrotic activity in rats. Significant alterations in GSH levels might be attributed to the presence of sulphated polyphenol metabolites content.

Contents

		Page number
	Acknowledgment	I
	Abstract	III
	Contents	V
	List of tables	X
	List of figures	XI
	List of abbreviations	XIV
1	Introduction	1
2	Review Of Literature	6
	2.1. Botanical description	6
	2.1.1 Family Tamaricaceae	6
	2.1.2 Genus <i>Tamarix</i>	6
	2.1.3 Tamarix nilotica	7
	2.2 Uses of Tamarix plants in folk medicine	11

2.3 Phytochemical investigation on some species from genus Tamarix	11
2.3.1 Polyphenols	12
2.3.1.1 Derivatives of organic acids	12
2.3.1.2 Flavonoids	16
2.3.1.3 Tannins	21
2.3.2 Terpenoids and steroids	32
2.4 Biological activity of some species from genus Tamarix	33
2.4.1 Antioxidant activity	33
2.4.2 Hepatoprotective activity	33
2.4.3 Antitumor and cytotoxic activity	34
2.4.4 Antidiabetic activity	35
2.4.5 Antimicrobial activity	35
2.4.6 Antiviral effect	36
2.4.7 Anti-inflammatory activity	36
2.4.8 Anti-nociceptive activity	37

	2.4.9 Anti-hyperlipidemic activity	37
	2.4.10 Antidiarrhoeal activity	38
3	Materials and methods	40
	3.1 Materials	40
	3.1.1 Plant materials	40
	3.1.2 Animals	40
	3.1.3 Chemicals and solutions	40
	3.1.4 Ready-made kits	45
	3.2 Apparatus.	48
	3.3 Methods	49
	3.3.1 Plant extraction	49
	3.3.2 Total phenolic content	49
	3.3.3 Oxygen radical absorbance capacity (ORAC assay)	50
	3.3.4 LC-HRESI-MS/MS analysis	50
	3.3.5 Experimental design	51

	3.3.6 The investigated parameters	53
	3.3.7 Methods of assessment of the investigated parameters	54
	3.3.8 Statistical analysis	72
4	LC/MS/MS Metabolic profiling and Phytochemical Investigations of <i>T. nilotica</i>	74
	4.1 Metabolic profiling of <i>T. nilotica</i> growing in Egypt (ETN)	74
	4.2 Metabolic profiling of <i>T. nilotica</i> growing in Saudi arabia (STN)	80
	4.3 Comparison of the metabolic profile	98
	4.4 Total phenolic content	99
	4.5 Oxygen radical absorbance capacity (ORAC assay)	100
5	Assessment of the antifibrotic activity	102
	5.1 Hepatotoxicity indices	102
	5.2 Histopathological examination with Hematoxylin and Eosin (H&E) stain	104
	5.3 Oxidative stress markers	106
	5.3.1 Liver content of reduced glutathione (GSH)	106

	5.3.2 Liver content of lipid peroxides (MDA)	106
	5.3.3 Catalase activity (CAT)	107
	5.4 Inflammatory markers	109
	5.4.1 Tumor necrosis factor alpha (TNF-α) content in liver	109
	5.4.2 Cyclooxygenase 2 (COX-2) enzyme expression in liver tissue.5.4.3 Nuclear factor kappa b (NF-κB p65) expression in liver	109
	tissue tissue	109
	5.5 Liver fibrosis markers	113
	5.5.1 Liver content of hydroxyproline	113
	5.5.2 Alpha smooth muscle actin (α -SMA) expression in liver	
	tissue	113
6	Discussion	117
7	General summary	124
8	References	132

List of tables

		Page number
2.1	Phenolics isolated from genus Tamarix	13
2.2	Flavonoids isolated from genus Tamarix	17
2.3	Tannins isolated from genus Tamarix	22
2.4	Terpenoids and steroids isolated from genus Tamarix	32
4.1	Polyphenols identified in ETN	77
4.2	Polyphenols identified in STN	82
4.3	Total phenolic content of ETN and STN	99
	Effect STN and ETN on serum alanine aminotransferase	
	(ALT)andserumaspartateaminotransferase(AST)levels	
5.1	in rats subjected to chronic carbon tetrachloride (CCl ₄)	
	intoxication	103
	Effect of STN and ETN on liver lipid peroxides (MDA),	
	liver reduced glutathione (GSH) and catalase activity	
5.2	(CAT) in rats subjected to chronic carbon tetrachloride	
	(CCl ₄) intoxication	108

List of figures

		Page number
2.1	Tamarix nilotica shrub (X=0.01)	9
2.2	Tamarix nilotica leaves (X=5)	9
2.3	Tamarix nilotica flowers (X=6)	10
3.1	Standard calibration curve of ALT	55
3.2	Standard calibration curve of AST	57
3.3	Standard calibration curve of GSH	59
3.4	Standard calibration curve of MDA	61
3.5	Standard calibration curve of TNF-α	65
3.6	Standard calibration curve of hydroxyproline	67

3.7	Standard calibration curve of COX-2	70
4.1	Negative LC-MS/MS chromatogram of ETN	79
4.2	Negative LC-MS/MS chromatogram of STN	83
4.3	Negative LC-MS/MS spectrum of gallic acid	84
4.4	Negative LC-MS/MS spectrum of nilocitin	85
4.5	Negative LC-MS/MS spectrum of methyl gallate-methyl ether	86
4.6	Negative LC-MS/MS spectrum of coniferyl alcohol-sulphate	87
4.7	Negative LC-MS/MS spectrum of ferulic acid isomer	88
4.8	Negative LC-MS/MS spectrum of tamarixetin-hexoside	89
4.9	Negative LC-MS/MS spectrum of ferulic acid sulphate derivative	90
4.10	Negative LC-MS/MS spectrum of methyl ferulate- sulphate	91
4.11	Negative LC-MS/MS spectrum of Kaempferol-glucuronide	92