

Behavior and Design of Bolted Circular Hollow Section (CHS) Moment Connections

A Thesis

Submitted in Partial Fulfilment of the Requirements of the Degree of

Master of Science in Civil Engineering

(Structural Engineering)

By **Moamen Ahmed Fahmy Emara**

Structural Engineer - Dar Al-Handasah

Bachelor of Science in Civil Engineering (Structural Engineering) Faculty of Engineering, Ain Shams University, 2014

Supervised by

Prof. Dr. Prof. Dr. Emam Abdel Mottaleb Soliman Ezzeldin Yazeed Sayed-Ahmed

Professor Structural Engineering Department Ain Shams University Professor

Department of Construction Engineering
The American University in Cairo

Behavior and Design of Bolted Circular Hollow Section (CHS) Moment Connections

By

Moamen Ahmed Fahmy Emara

Structural Engineer - Dar Al-Handasah

Bachelor of Science in Civil Engineering (Structural Engineering)
Faculty of Engineering, Ain Shams University, 2014

Examiners' Committee

Prof. Dr. Sherif Ahmed Mourad Professor at Structural Engineering Department Faculty of Engineering, Cairo University	•••••••
Prof. Dr. Abdelrahim Khalil Dessouki	
Professor at Structural Engineering Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Emam Abdel Mottaleb Soliman	
Professor at Structural Engineering Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Ezzeldin Yazeed Sayed-Ahmed	
Professor at Department of Construction Engineering	
School of Sciences and Engineering, The American Un	iversity in Cairo

Date: / /

STATEMENT

Date:

This thesis is submitted as a partial fulfilment of the degree of Master of Science in Civil Engineering (Structural Engineering), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Name:	Moamen Ahmed Fahmy Emara
Signature:	

08 / 12 / 2018

RESEARCHER DATA

Name : Moamen Ahmed Fahmy Emara

Date of birth : 20/03/1992

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Faculty of Engineering, Ain Shams University

Date of issued degree : 2014

Current job : Structural Engineer at Dar Al-Handasah

ACKNOWLEDGEMENTS

First and foremost, I thank Allah through whom all things are possible.

I would like to express my deepest gratitude to my supervisor, Prof. Emam Soliman, for his support throughout this research project.

I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Ezzeldin Yazeed, for his invaluable help, guidance, technical and moral support, and encouragement throughout all the phases of this research project.

I think this research would have not been completed without the continuous support from my family. I would like to thank my mother, Asmaa, for the ongoing love and sacrifice to make me in a good state of mind, which I really needed a lot. I would like to thank my father, Ahmed, for his continuous encouragement, consideration, and support. I would like to thank my brothers, Muhammad and Mohab, for their support and encouragement in all the stages of this research. Thank you for believing in me and standing by my side for every step of the way.

I appreciate the technical support of my colleagues in the Department of Structural Engineering at Dar Al-Handasah. I'm deeply grateful for all the support and considerations provided by Dr. Sameh Gaawan. Special thanks to Omar Hassan for his technical support and fruitful negotiations about every single phase of this research project. Special thanks to Dr. Rimon Aziz and Dr. Mossab Al-Tahhan for their sincere support.

I would like to express my gratitude for my friends. Thanks to every one of them, who gave me moral support during my down times. Special thanks to Mina Sami for his unconditional support and on-going encouragement at hard times, for which I am deeply grateful. Special thanks to Elham Esmaiel for her inspiration and support. I'm thankful for the journey companions, Eslam Osama and Ayman AbdelMonem, for their continuous support along different parts of the project

THESIS SUMMARY

Observing nature, the presence of circular sections is very common, especially in the stems of plants and bones. Circular sections are very efficient, as they can aggregate interesting structural features using less material compared to other type of sections. As an example, circular sections compression resistance is high due to their radial symmetry. Circular hollow sections also do not warp, increasing their torsional resistance. Due to these advantages, combined with an architecturally appealing shape, circular hollow sections are commonly used in many structures. However, despite the qualities, connections treatment in this kind of structures is more complex and requires empirical and numerical tests to check and predict their behaviour.

This research aims to study the behaviour of bolted CHS joints subjected to pure bending moment. Unlike the behaviour of this joint when subjected to axial force, which is extensively studied before, very few research programmes have been performed on its behaviour under the effect of bending moment, leading to an approximate design approach adopted by current codes of practice. The research includes a state-of-the-art literature review for the studied joint covering all aspects related to the joint behaviour and design. The literature review also includes the experimental programme used in the verification of a proposed finite element model for the said connections.

Two finite element models are developed using a general-purpose finite element analysis (FEA) package. Both models are verified against experimental programme found in literature and a good correlation between results is found.

A parametric study is then performed using the finite element models, using the same techniques verified previously in the verification process of the FE model. The studied parameters include endplate thickness (10 mm, 16 mm, 20 mm, or

30 mm) and its configuration (whether stiffened or not), the bolt diameter (M12, M16, M20, M24), the bolt grade (8.8 or 10.9), and their pattern (relative to moment direction; one or two bolts at maximum moment). The parametric study includes the results of 128 model which are divided into eight groups based on the bolt pattern, bolts grade, and the endplate configuration. Each group is comprised of 16 models.

The results of the parametric study are presented in charts and tables and the effects of these parameters on the behaviour are discussed in detail. The capacity of joints obtained by the FEM is then compared to the current design approach and it is found that the current design approach adopted by CIDECT and AISC is over-conservative and does not reflect the actual capacity of these joints.

Alternative design approach is found in the literature, studied, further developed and its results are compared to the results obtained via the finite element analysis. It is found that it yields closer results to the actual capacity of the investigated joints than design approaches adopted by current international design codes.

Keywords: circular hollow sections, CHS, bolted connections, moment connections, CHS splice, numerical modelling, Abaqus, FEA.

TABLE OF CONTENTS

STATEM	IENT	i
RESEAR	CHER DATA	ii
ACKNO	WLEDGEMENTS	iii
THESIS	SUMMARY	iv
TABLE (OF CONTENTS	vi
LIST OF	FIGURES	X
LIST OF	TABLES	xviii
Notati	ONS	xix
ABBREV	VIATIONS	xxi
1. CF	IAPTER 1: Introduction	1
1.1.	General	1
1.2.	Problem statement	1
1.3.	Research objectives and goals	3
1.4.	Research methodology	3
1.5.	Thesis content	4
2. CH	IAPTER 2: STATE-OF-THE-ART REVIEW	5
2.1.	Introduction	5
2.2.	Circular endplate design.	6
2.2	.1. General	6
2.2	.2. Circular endplate subjected to tension	6
2.2	.3. Circular endplate subjected to bending moment	10
23	Current international design codes	13

	2.3.	1.	General	13
	2.3.	2.	Architectural institute of Japan standards, AIJ (1990)	13
	2.3.	3.	CIDECT standards	15
	2.3.	4.	AISC standards	17
2	.4.	Mo	odelling of material properties in finite element analysis	19
2	.5.	Mo	odelling of bolts in finite element analysis	22
	2.5.	1.	Full bond simulation	23
	2.5.	2.	Coupled bolt	23
	2.5.	3.	Rigid body element (RBE) bolt	24
	2.5.	4.	Spider bolt	24
	2.5.	5.	Solid bolt	25
	2.5.	6.	Solid-beam hybrid bolt	26
	2.5.	7.	Solid-six spar hybrid bolt	27
	2.5.	8.	Shell bolt simulation	28
3.	СН	AP	ΓER 3: FINITE ELEMENT MODELLING AND VERIFICATION	29
3	.1.	Int	roduction	29
3	.2.	Av	railable experimental programme	30
3	.3.	Pro	oposed FE model description	32
3	.4.	Ma	aterial modelling	37
3	.5.	Lo	ad application	39
3	.6.	Во	undary conditions	41
3	.7.	Co	ntact modelling	43
3	.8.	Ve	rification of the FEM	45
	3.8.	1.	Unstiffened joint (J1)	45

	3.8.	2.	Stiffened joint (J2)	48
	3.9.	Su	mmary	51
4.	CH	AP	TER 4: PARAMETRIC STUDY	52
	4.1.	Int	troduction	52
	4.2.	Fin	nite element model description	52
	4.3.	Ma	aterial model	53
	4.4.	Pla	ain pipe model	55
	4.5.	Pa	rameters investigated	56
	4.6.	Th	e parametric study groups	58
	4.7.	Re	sults and discussion	59
	4.7.	1.	Current international design approach	59
	4.7.	2.	Results of the finite element analysis	61
	4.7.	3.	Strength of unstiffened joints	86
	4.7.	4.	Moment-midspan deflection and effect of endplate thickn	ess:
	unst	tiffe	ened joints	87
	4.7.	5.	Effect of bolts diameter: unstiffened joints	89
	4.7.	6.	Effect of bolts pattern: unstiffened joints	94
	4.7.	7.	Moment- midspan deflection and effect of endplate thicks	ness:
	stiff	fene	ed joints	100
	4.7.	8.	Effect of bolts diameter: stiffened joints	102
	4.7.	9.	Effect of bolts pattern: stiffened joints	105
	4.7.	10.	Comparison between results of stiffened and unstiffene 111	d joints
5.	СН	AP'	TER 5: RECOMMENDED DESIGN PROCEDURES	115

5.1.	Introduction	115
5.2.	Overview of design proposed by Wang et al. (2013)	115
5.3.	Assessment of the design procedures proposed by Wang et al. (20 120	013)
5.4.	Further development on Wang et al. (2013) design procedure	122
6. CE	IAPTER 6: SUMMARY AND CONCLUSIONS	131
6.1.	Summary	131
6.2.	Conclusions	132
6.3.	Recommendations for future research	134
List of 1	references	135