Biological fixation of closed comminuted femoral fractures using plates versus intramedullary nailing

Thesis Submitted in Partial Fulfillment of M.D. Degree of Orthopaedic Surgery

By

Mohamed Ismail Gomaa

(M.B., B.Ch, M.Sc.)

Under the supervision of

Prof. Dr. Sameh Ahmed Shalaby

Professor of Orthopedic Surgery
Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Mohamed Abdel Moneim Eid

Assist. Professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

ACKNOWLEDGMENT

Praise is to Allah, who guided me to do this work.

I would like to express my sincere gratitude to my thesis senior supervisor *Prof. Dr. Samah Shalaby (Professor of Orthopaedic Surgery, Faculty of Medicine, Ain-Shams University)* for his supervision, patience and helpful discussions he has given me during this work. It was his constant encouragement, creative thoughts and suggestions that led to every progress in this research.

I am grateful to *Dr. Mohamed Abd El-moneim (Assistant Professor of Orthopaedic Surgery, Faculty of Medicine, Ain-Shams University*) for his assistance and support during my research. I would like to express my sincere gratitude to him for reviewing and providing me with necessary comments, suggestions and feedback.

Table of Contents

Title	Page
Introduction	1
Aim of the work	5
Anatomy	6
Blood supply	12
Classifications of femoral fractures	15
The Biology Of Fracture Healing	23
Principles Of Biological Fixation	28
Osteosynthesis With Plate Fixation	37
Minimal Invasive Percutaneous Plating	45
Osteosynthesis (MIPPO) of Fracture	
Femur	
Intrameduallary Nails(IMN)	53
Indirect Reduction	81
Control of length, rotation and alignment	85
Patients and Methods	92
Results	108
Case presentation group 1 (IMN)	132
Case presentation group 2(MIPPO)	157
Discussion	179
Summary and conclusion	191
References	193
Appendages	206
Arabic summary	210

List of Figures

Figure Number	Figure Title	Page Number
	Anatomy	
1	Anterior and posterior view of the femur.	6
2	Bony landmarks of proximal femur (A) anterior view.(B), posterior view.	7
3	Distal femur, a: anterior surface, B: posterior surface.	9
4	Stresses affecting on the femur: Note the very high compressive stresses in the medial cortex and smaller tensile stresses in the lateral cortex.	10
5	The typical deformities of femoral shaft fractures (proximal [A]mid shaft [B], and distal [C]) due to unbalanced muscle forces.	11
	BLOOD SUPPLY	
6	Arterial blood supply of the thigh.	12
	CLASSIFICATIONS	
7	Fielding classification of subtrochanteric fractures.	15
8	Seinsheimer classification of subtrochanteric fractures. Type I: Any fracture with less than 2mm displacement. Type IIA: Two part transverse. Type IIB: Two part spiral with lesser trochanter in proximal fragment. Type IIC: Two part spiral with lesser trochanter in distal fragment. Type IIIA: Three part spiral with third fragment is the lesser trochanter. Type IIIB: Three part spiral with third fragment a butterfly. Type IV: Four or more fragments. Type V: Any fracture with extension into greater trochanter.	16
9	AO classification of subtrochantericfractures.A1.1: Simple spiral.A2.1: Simple oblique.A3.1: Simple transverse. B1.1: Spiral wedge.B2.1: Bending wedge.B3.1: Fragmented wedge.	17
10	Russell-Taylor classification of subtrochanteri fractures: Type I: fractures with the piriformis fossa intact. IA: with lesser trochanter intact.IB: with lesser trochanter fractured. Type II: fractures involving the piriformis fossa. IIA: with lesser trochanter intact.IIB: with lesser trochanter fractured.	18
11	Winquist classification. <i>Grade 0:</i> no comminution, <i>Grade 1:</i> small wedge fragment or comminutions, at least 50 % of intact cortical contact. <i>Grade II:</i> large wedge or comminution segment, at least 50 % of intact cortical contac. <i>Grade III:</i> large wedge or comminution segment, less than	19

	50 % of intact cortical contact.	
	Grade IV: comminution zone without direct contact	
	between the main fragments	
12	AO classification of femoral shaft fractures. Groups: A	20
	simple fractures: A1 spiral, A2 oblique (≥30°), A3	
	transverse (<30°).	
	Group B Wedge fractures:B1 torsion wedge, B2 bending	
	wedge, B3multifragmentary.	
	Group C complex fractures: C1 comminuted spiral fracture, C2 segmental fracture, C3 Irregular comminuted fracture.	
13	The AO classification of distal femoral fractures.	22
13		44
	The biology of fracture healing	
14	Direct bone healing in a sheep metatarsal osteotomy model.	23
	A: Radiograph of the osteotomy after rigid fixation using a	
	compression plate. B : Longitudinal histological slice 24	
	weeks after surgery. C: Histological section demonstrating	
15	primary bone healing. Phase of inflammation and tissue response.	24
15	Phase of intrammation and dissue response. Phase of intramembranous and endochondral ossification.	24
16		25
17	Phase of fracture consolidation.	26
18	Phase of bone remodelling.	27
	PRINCIPLES OF BIOLOGICAL	
	FIXATION	
19	Radiographs showing the evolution of fracture treatment.	30
	Various methods give two different radiological types of	
	healing (indirect and direct) depending on the	
	biomechanical environment which is produced by the	
•	method of stabilization (relative stability, absolute stability).	24
20	Plate rigidity and healing type. A: Fracture fixation with a less rigid plate; a fracture gap is	31
	still visible after 7 weeks. The fragment ends have resorbed,	
	and periosteal callus has formed.	
	B: Using a more rigid plate; the fracture has remodelled and	
	less periosteal callus is present.	
21	Principle of leaving large fracture gaps which rapidly fill	32
	with solid callus where gap strain is small. No bone grafting	- -
	was performed in this case	
22	The tolerance of instability of simple versus multiple	33
	fracture lines.	
23	Callus formation in fractured bones provides bending	35
	rigidity. Abundant callus formation increases bending	
	rigidity.	
24	callus formation with implants.	36
	a ,The presence of the nail inhibits callus formation in the	
	endosteum. b, Periosteal callus is formed on the side	
	opposite to the plate.	

25	Canine tibial fracture; callus formation in relation to	36
23	implants.	30
	A: Note the minimal presence of medullary callus in nailed	
	bone showing abundant periosteal callus at 42, 90, and 120	
	days.	
	B: More medullary callus has formed in fractures which	
	were plated at 42 and 90 days, and which has remodelled	
	after 120 days.	
	Osteosynthesis with plate fixation	
26	Factors affecting the bone–plate fixation.	38
27	Configuration of screws.	40
28	Screw failure. A: Bending failure secondary to a loose	41
	junction between the plate and the screw.	
	B: Shea failure secondary to excessive torque.	
29	More screws in one plate decrease the magnitude of force	42
	(red arrows) in each screw and therefore reduce the risk of pull-out.	
30	Influence of screw placement relative to the fracture site.	42
30	A: Minimizing the distance between the nearest screws on	72
	either side of the bone fragments (working length) increases	
	stiffness at the fracture (reducing gap motion).	
	B: Therefore, the stress within the longer working plate	
	length is lower.	
	C–D: The farthest screws determine the effective usage of	
21	plate length and contribute to fracture gap stability. stress variation on a long plate due to variation between	44
31	screws.	44
	Minimal Invasive Percutaneous	
	Plating Osteosynthesis (MIPPO) of	
	fracture femur	
32	Dynamic compression principle.	46
33	The LC-DCP with its structured under surface for limited	47
	contact between plate and bone and an even distribution of	
34	the holes throughout the plate. The dynamic hip screw DHS	48
	Dynamic condylar screw (DCS). A: Basic components of	
35	the DCS system. B: Here the DCSis used to generate	49
	compression of a T-type supracondylar fracture of the distal	
	femur.	
36	A and B, Force distribution of a plate osteosynthesis	50
	without angular stability: The screw tightening moment	
	leads to surface pressure between the plate and bone. The	
	friction thus created in the plate-bone contact zone stabilizes	
	the bone fragment in relation to the load carrier. This	
	system only becomes statically secure after bicortical screw fixation. Typical distribution of forces for a	
	LIFosteosynthesis with angular stability: This configuration	
	211 000000 minimum angular statement, 11115 configuration	

	is statically secure with only monocortical fixation since the	
	locking head screw (LHS) is anchored in a mechanically	
	stable manner in the load carrier.	
37	A and B, The less invasive stabilization system.	51
38	A-C, Locking compression plate with combination	52
	hole.LCP combination hole combining two proven	-
	elements. One half of the hole has the design of the DC/LC-	
	DCP dynamic compression unit (DCU) for conventional	
	screws. The other half is conical and threaded to accept the	
	matching thread of the locking head screw providing	
	angular stability.	
	INTRA MEDULLARY NAILS	
39	Geometric features of an intramedullary nail.	53
	A: cloverleaf, fluted, solid, and open designs.	
	B: Similar to the way a nail achieves fixation in wood	
	through elastic compression of the wood, the cloverleaf	
	Ku ntscher nail achieves fixation in the isthmus through the	
	elastic expansion of the compressed nail.	
40	The physiologic loading that acts on a nail involves torsion	55
	(A), compression of the medial aspect of the nail (B), and	
	tension on the lateral aspect of the nail (C).	
41	Four-point loads acting on a distal interlocking screw.	56
	Under axial load, and in the absence of cortical contact,	
10	bending of the screw and screw failure may occur.	=0
42	Longitudinal bow of the femoral nail.	58
43	lateral radiograph showing mismatch in the radius of	58
	curvature between the nail and the femur can lead to distal	
4.4	anterior cortical perforation.	50
44	cross section of the nail: A: Nail with triangular shape in cross section. There are	59
	three small contact areas after press fit insertion into cavity.	
	B: Nail with clover leaf shape in cross-section with three	
	enlarged contact areas and an almost closed slot after press	
	fit insertion. Expansion forces (arrows) caused by the elastic	
	deformation of the implant from its original shape (dotted	
	lines) press the nail against the cortex.	
45	The effect of reaming on cortical contact area.	61
	A: The isthmus is the narrowest portion of the	
	intramedullary canal of the femur. Without reaming, the	
	isthmus limits the size of the nail to be placed and the area	
	of cortical contact with the nail.	
	B: Reaming widens and lengthens the isthmic portion of	
	the intramedullary canal.	
	C: after reaming, a larger diameter nail may be placed and	
	greater cortical contact area achieved.	
46	Working length (WL). The length of the nail that is	63
	unsupported by bone when loaded.	
	This unsupported length differs based on the mode of	
	testing. A: in compression, WL is the distance between the	

	intact proximal and the intact distal fragments.	
	B: in bending, the proximal and distal portions of the main	
	bone fragments come into contact with the nail. Therefore,	
	WL is the maximal distance between the sites at which the	
	nail is in contact with the bone proximally and distally,	
	which can be equal to the length of the fracture gap.	
	C: when comminution exists, the main bone fragments do	
	not resist torsion. In this situation, WL is the distance	
	between the proximal and the distal locking points.	
	Torsional rigidity is inversely proportional to WL, whereas	
	rigidity in bending is inversely proportional to the square of	
	WL.	
47	The ideal starting point for insertion of an antegrade	66
	femoral nail is in the posterior portion of the piriformis	
	fossa. Anterior placement of the starting hole places the	
	proximal femur at increased risk of intraoperative fracture.	
48	Types of reamers.	67
	A: the front-cutting reamer used to initiate a path in bone.	
	B: The side-cutting reamers have a sharper chamfer angle	
	and a shorter chamfer length and therefore are used for	
	increasing the size of the path, not for creating a new path.	
	C: A combination front- and side-cutting reamer.	
40	D: A front-cutting reamer tip attached to a flexible shaft.	(0
49	A, Eccentric reaming of distal fragment resulting from poor guide pin placement. B, splitting of the cortex may follow	68
	nail impaction.	
50	Liberation of the intramedullary fat during reaming of the	72
30	femur.	1 2
51	Comparison of the oxygenation ratio in patients with	72
	reamed (RFN) and unreamed (UFN) femoral nailing. In	
	reaming group significantly reduced oxygenation ratio was	
	measured when compared to ratios measured in unreamed	
	patients.	
52	Ante grade femoral nail with standard locking screws.	75
53	Cephalo-meducllary nail.	76
54	Retrograde femoral nail	78
55	A: gamma nail and B: proximal femoral nail.	79
56	Expert femoral nail	80
57	Multiplanar locking screws	80
	Indirect reduction	
58	Traction table	82
59	Supporting pad under the knee for reduction of distal	83
	femoral fracture.	0.5
60	Femoral distractor in indirect reduction of femoral fracture	83
61	Iindirect reduction using plate.	84
62	Preoperative fluoroscopic image centered over the lesser	88
	trochanter of the <i>uninjured</i> limb.	

63	Bovie cord method used for restoring the proper mechanical axis of the limb.	91
	Materilas and Methods	
64	The whole limb and lower torso is included in the sterile field.	99
65	Draping	100
66	Incision in IMN.	101
67	Passing the guide wire.	102
68	Reaming.	102
69	Insertion of nail.	102
70	Distal locking screws.	103
71	Proximal locking screws (Reconstruction nail).	103
72	Incisions in biological DCS.	104
73	Skin closure DCS (MIPPO).	105
74	Image view in proximal part in DCS.	105
75	Image view in distal part in DCS	105
	Results	
76	Scatter gram shows age distribution in group 1.	111
77	Scatter gram shows age distribution in group 2.	112
78	AO classification among group 1.	115
79	AO classification among group 2	116
80	Comparison between group 1 and group 2 regarding AO classification of fractures.	116
81	Complications in group 1.	129
82	Comparison between group 1 and 2 regarding complications.	131
	Case presentation group 1 (IMN).	
83	Case (1) A P and lateral post-operative radiographs.	133
84	Case (1) 6 months A P and lateral post-operative radiographs.	133
85	Case (1) 12 months A P and lateral post-operative radiographs.	134
86	Case (6) A P pre-operative and post-operative radiographs.	134
87	(6) 6 and 9 months A P post-operative radiographs.	136
88	Case (10) A P pelvis and left femur pre-operative radiographs.	137
89	Case (10) intra-operative radiographs	139
90	Case (10) 4 months A P and lateral postoperative radiographs.	139
91	Case (10) 16 months A P post-operative radiographs	140
92	Case (10) 24 months A P post-operative radiographs after nail removal.	140

93	Case (11) A P pre-operative radiographs.	141
94	Case (11) intra-operative radiographs.	142
95	Case (11) A P and lateral post-operative radiographs.	142
96	Case (11) 6 months A P and lateral post-operative radiographs.	143
97	Case (11) 12 months A P and lateral post-operative radiographs.	143
98	Case (15) A P pre-operative radiographs.	145
99	case (15) intra-operative radiographs	145
100	Case (15) 12 months A P and lateral post-operative radiographs.	146
101	Case (15) 18 months A P and lateral post-operative radiographs.	146
102	Case (19) pre-operative radiographs.	148
103	Case (19) 3 months post-operative radiographs	148
104	Case (19) 8 months post-operative radiographs	149
105	Case (21) pre-operative radiograph.	150
106	Case (21) 2 months post-operative radiographs.	150
107	case (21) 8 months post-operative radiographs	151
108	Case (21) 12 months' post-operative radiographs.	153
109	Case (21) 24 months' post-operative radiographs after nail removal.	152
110	Case (30) A P and lateral pre-operative radiographs.	153
111	Case (30) A P and lateral post-operative radiographs.	154
112	Case (30) 4 months A P and lateral post-operative radiographs.	154
113	case (30) 8 months A P and lateral post-operative radiographs after exchange nailing and bone grafting	155
114	Case (30) 12 months A P and lateral post-operative radiographs.	155
115	Case (30) 16 months post-operative 3D CT scan.	156
	Case presentation group 2 (MIPPO)	
116	Case (56) A P and lateral pre-operative radiographs.	158
117	Case (56) A P and lateral post-operative radiographs.	158
118	Case (56) 12 months A P and lateral post-operative radiographs.	159
119	Case (34) A P pre-operative radiographs.	160
120	Case (34) A P and lateral post-operative radiographs.	161
121	Case (34) 8 months A P and lateral post-operative radiographs.	161
122	Case (34) 12 months A P and lateral post-operative radiographs.	162
123	Case (35) A P and lateral pre-operative radiographs.	163
124	Case (35) A P and lateral post-operative radiographs.	164

125	Case (35) 12 months A P and lateral post-operative radiographs.	164
126	Case (37) A P and lateral pre-operative radiographs.	166
127	Case (37) A P and lateral post-operative radiographs.	166
128	Case (37) 5 months A P and lateral post-operative radiographs.	167
129	Case (37) 10 months A P and lateral post-operative radiographs.	167
130	Case (48) pre-operative radiographs.	169
131	Case (48) post-operative radiographs.	169
132	Case (48) 10 months post-operative radiographs	170
133	Case (47) A P and lateral pre-operative radiographs.	171
134	Case (47) A P and lateral post-operative radiographs.	172
135	Case (47) 10 months A P and lateral post-operative radiographs.	172
136	Case (51) pre-operative radiographs.	174
137	Case (51) post-operative radiographs.	174
138	Case (51) 8 months A P and lateral post-operative radiographs.	175
139	Case (51) 12 months A P and lateral post-operative radiographs.	175
140	Case (42) pre-operative radiographs.	177
141	Case (42) A P and lateral post-operative radiographs.	17
142	Case (42) 6 months A P and lateral post-operative radiographs.	178
143	Case (42) 12 months A P and lateral post-operative radiographs.	178

List of Tables

Table	Table	page
number	Title	
1	Harris hip score.	109
2	Age in group 1	111
3	Age in group 2	112
4	Sexdistribution in group 1	113
5	Sex distribution in group 2	113
6	Mode of trauma in group 1	113
7	Mode of trauma in group 2	114
8	AO classification among group 1	114
9	AO classification in group 2	115
10	Comparison between group 1 and 2 as regard personal	117
	and clinical data	
11	Timing of surgery in group 1	118
12	Timing of surgery in group 2	118
13	comparison between group 1 and group 2 regarding	119
	timing of surgery	
14	duration of surgery in group 1	119
15	duration of surgery in group 2	120
16	comparison between group 1 and group 2 regarding	120
	duration of surgery	
17	blood loss in group 1	120
18	blood loss in group 2	121
19	comparison between group 1 and group 2 regarding	121
	intra operative blood loss	
20	hospital stay in group 1	122
21	hospital stay in group 2	122
22	comparison between group 1 and group 2 regarding	122
	hospital stay	
23	union time in Group 1	123
24	union time in Group 2	123
25	comparison between group 1 and group 2	123
26	regarding union time	104
26	follow up period in Group 1	124
27	follow up period in Group 2	124
28	comparison between group 1 and group 2 regarding	124
20	follow up periods	105
29	Harris hip score among group 1	125
30	Harris hip score among group 2	125
31	Comparison between group 1 and group 2 regarding functional outcome using Harris hip score	125
22	6 1	126
32	Comparison between group 1 and group 2 as regard preoperative, operative and post operative	126
	characteristics	
33	ROM in group 1	127
	5 1	
34	ROM in group 2	127

35	complications in group 1	129
36	complications in group 2	130
37	Comparison between group 1 and 2 as regard	131
	complication	
38	Comparison between published studies in operative	186
	time blood loss and follow up period	
39	Comparison between published studies in union time,	189
	delayed union, non union and implant failure	
40	Comparison between published studies in LLD and	190
	male-alignment.	
41	Comparison between published studies in infection	191
42	Comparison between published studies in functional	192
	outcome using Harris hip score	

List of Abbreviations

AO	ArbeitsgemeinschaftfürOsteosynthesefragen
IM	Intra medullary
IMN	Intra medullary nail
LC-DCP	Limited contact dynamic compression plate
DCP	Dynamic compression plate
LISS	Less Invasive Stabilization System
MIPPO	Minimal invasive percutaneous osteosynthesis
MVC	Motor vehicle collision
LCP	Locked compression plate
TSF	Thread shape factor
DCS	Dynamic condylar screw
DHS	Dynamic hip screw
LHS	Locking head screw
DCU	Dynamic compression unit
LPHP	Locked proximal humeral plate
CSMI	Cross-sectional moment of inertia
WL	Working length
ISS	Injury Severity Score
FGF	Fibroblast growth factor
PDGF	platelet derived growth factor
IGF-1	Insulin like growth factor 1
TGF- β	transforming growth factor β
MMP-2	Mono morphogenetic protein 2
VEGF	vascular endothelial growth factor
TEE	transesophageal echocardiography
RFN	Reamed femoral nail
UFN	Undreamed femoral nail
ARDS	Acute respiratory distress syndrome
CT	Computerized tomography
LLD	Limb length discrepancy
FU	Follow up
HHS	Harris hip score

Introduction

Orthopaedic surgeons have long been fascinated with fractures of the femur, the largest and strongest bone in the body.

In healthy adults this bone will not fracture without considerable violence, making femoral fractures major injuries that are commonly the result of high-energy trauma, often associated with other complex injuries and forming part of a life-threatening injury pattern.

Accordingly, femoral fractures have become the index bony injury in fracture research associated with severe polytrauma and the subject of extensive work relating the management of fractures to the care of the whole patient. ¹

Femoral fractures should be considered in two ways: first, according to the general physiologic effects of severe injury and the wider effects of their treatment, and second, with regard to their anatomic patterns and relevant biomechanical management issues.²

There are many methods for the treatment of femur shaft fractures. The surgeon must be aware of the indications, advantages and disadvantages of each treatment option and decide the appropriate treatment method for each patient individually. ²

Fracture type, location, presence of comminution or not, patient age, and lifestyle expectation are important factors when selecting the treatment method.²

The initial mechanical concept of osteosynthesis of long bone fractures aimed at perfect anatomic reduction and stable fixation. Primary bone healing without external callus formation was the target.³

However, in comminuted fractures, anatomic reduction requires extensive soft tissue stripping and subsequent damage to the blood supply at the fracture site.³

After observing the better results with closed intramedullary nailing (IMN) in comminuted fractures, priority changed from a mechanical to biological basis.³