

Ain Shams University
Faculty of Engineering
Electrical power and Machines Department

Load Frequency Control for Interconnected Power System

By

Mohamed Mostafa Elsaied Mohamed

B.Sc. Electrical Engineering, Ain Shams University

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering

Supervised by

Prof. Dr. / Mahmoud Abdelhamed Mostafa

Faculty of Engineering, Ain Shams University

Assoc. Prof. Dr. / Said Fouad Mekhamer

Faculty of Engineering, Ain Shams University

Dr. / Mahmoud Abdallah Attia Ibrahim

Faculty of Engineering, Ain Shams University

Ain Shams University Faculty of Engineering Electrical power and Machines Department

Load Frequency Control for Interconnected Power System

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science of Electrical Engineering

By

Mohamed Mostafa Elsaied Mohamed

B.Sc. Electrical Engineering, Ain Shams University, 2014

Examiners Committee

Title, Name & Affiliation	Signature
Prof. Dr. / Mahmoud Abdelhamed Mostafa	
Faculty of Engineering, Ain Shams University	
Prof. Dr. / Yasser Galal Mostafa	
Arab Academy for Science Technology &	
Maritime Transport	
Prof. Dr. / Hany Mohamed Hasanien Mohamed	
Faculty of Engineering, Ain Shams University	

Date: (/ /2018)

SUPERVISORS COMMITTEE

Name: Mohamed Mostafa Elsaied Mohamed

Thesis Title: Load Frequency Control for Interconnected Power System.

Degree: submitted in the Partial Fulfillment for the Requirement of the Degree of Master of

Science of Electrical Engineering.

Name, title and affiliation

	Signature
Prof. Dr. / Mahmoud Abdelhamed Mostafa	
Professor of Electric Power	
Electrical power and Machines Department	
Faculty of Engineering, Ain Shams University	
Assoc.Prof.Dr. / Said Fouad Mekhamer	
Associate Professor of Electric Power	
Electrical power and Machines Department	
Faculty of Engineering, Ain Shams University	
Dr. / Mahmoud Abdallah Attia Ibrahim	
Teacher of Electric Power	
Electrical power and Machines Department	
Faculty of Engineering, Ain Shams University	

Researcher Data

Name : Mohamed Mostafa Elsaied Mohamed

Date of birth : 25/11/1992

Place of birth : Cairo

Academic Degree : B.Sc. in Electrical Engineering.

Field of Specialization : Electrical Power and Machines

University issued the degree : Faculty of Engineering, Ain-Shams University.

Date of issued degree : 2014

Current job : Demonstrator in Faculty of Engineering, Ain-

Shams University.

STATEMENT

This thesis is submitted as partial fulfillment of M.Sc. degree in Electrical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Mohamed Mostafa Elsaied Mohamed

ACKNOWLEDGEMENT

First of all, thanks and indebtedness are due to **ALLAH** who made this work possible.

I would like to express my deep thanks and gratitude to Prof. Dr. Mahmoud Abdelhamed Mostafa, Professor of Electrical Engineering, Faculty of Engineering, Ain-Shams University, not only for suggesting the subject of this research work, but also for her close supervision, valuable guidance, help, encouragement, and kind criticism.

I would like to express my deep thanks and gratitude to Assoc.Prof.Dr / Said Fouad Mekhamer and Dr. Mahmoud Abdallah Attia, Electrical power and machines department Faculty of Engineering Ain-Shams University, for the supervision, continuous useful discussion, encouragement and motivation.

Mohamed Mostafa Elsaied Mohamed

List of Contents

CHAPTER (1) INTRODUCTION	1
1.1 General	1
1.2 Thesis Objectives	4
1.3 Thesis Outlines	4
CHAPTER (2) MODELING OF SYSTEM UNDER STUDY	5
2.1 Basic Generator Control Loops	6
2.2 System components	7
2.2.1 Generator model	7
2.2.2 Load model	8
2.2.3 Prime mover model	9
2.2.4 Governor model	10
2.3 The model for a two area system	13
2.4 The controllers models	16
2.5 Wave Energy Conversion System (WECS)	17
CHAPTER (3) A LITERATURE SURVEY OF PREVIOUS STUDIES	20
3.1 Previous Studies	20
3.2 Comments on the previous literature	29
CHAPTER (4) OPTIMIZATION TECHNIQUES FOR CONTROLLER	RS'
PARAMETERS	30
4.1 Harmony Search (HS) Algorithm	31
4.2 Teaching-Learning-Based Optimization (TLBO)	32
4.3 Sine Cosine Algorithm (SCA)	35
CHAPTER (5) SIMULATION RESULTS AND DISCUSSION	37
5.1 Case Study (1)	37
5.1.1 HS with PID&PIDA	37

5.1.2 TLBO with PID&PIDA	39
5.1.3 SCA with PID &PIDA	41
5.2 Case Study (2)	44
5.2.1 HS with PID &PIDA	44
5.2.2 TLBO with PID & PIDA	46
5.2.3 SCA with PID & PIDA	48
5.3 Case Study (3)	52
5.3.1 HS with PID & PIDA	52
5.3.2 TLBO with PID & PIDA	54
5.3.3 SCA with PID & PIDA	56
5.4 Case Study (4)	60
CHAPTER (6) CONCLUSIONS AND FUTURE WORK	63
6.1 Conclusions	63
6.2 Future Work	64
References	65

List of Figures

CHAPTER (1) INTRODUCTION	1
Fig.1 .1 The multi area system	2
Fig .1.2 Uncontrolled two area system	3
CHAPTER (2) MODELING OF SYSTEM UNDER STUDY	5
Fig .2.1 The generator control loops	6
Fig .2.2 The generator block diagram	8
Fig .2.3 the Generator and Load model	9
Fig .2.4 the Generator and Load model	9
Fig .2.5 block diagram of the prime mover	10
Fig .2.6 Speed governing system	10
Fig .2.7 Governor steady-state speed characteristics	12
Fig .2.8 Block diagram of the speed governing system of a steam turbine	12
Fig .2.9 The model for a one area system	13
Fig .2.10 Uncontrolled two area system	14
Fig .2.11 The controlled case for the two area model	15
Fig .2.12 Archimedes Wave Swing (AWS) model	17
Fig .2.13 Free body diagram of Archimedes Wave Swing (AWS) model	19
Fig .2.14 The wave applied on the WECS	19
CHAPTER (4) OPTIMIZATION TECHNIQUES FOR CONTROLLE	
PARAMETERS	30
Fig .4.1 Flow chart of HS Algorithm	32
Fig .4.2 Flow chart of TLBO Algorithm	
Fig .4.3 Flow chart of SCA	36
CHAPTER (5) SIMULATION RESULTS AND DISCUSSION	37

Fig .5.1 Frequency Deviation of area 1 for 1 % load change in area 1 (HS)37
Fig .5.2 Frequency Deviation of area 2 for 1% load change in area 1 (HS)38
Fig .5.3 Tie line deviation for 1% load change in area 1 (HS)
Fig .5.4 Frequency Deviation of area 1 for 1 % load change in area 1 (TLBO)39
Fig .5.5 Frequency Deviation of area 2 for 1% load change in area 1 (TLBO)40
Fig .5.6 Tie line deviation for 1% load change in area 1 (TLBO)40
Fig .5.7 Frequency Deviation of area 1 for 1% load change in area 1 (SCA)41
Fig .5.8 Frequency deviation of area 2 for 1% load change in area 1 (SCA)42
Fig .5.9 Tie line Deviation for 1% load change in area 1 (SCA)42
Fig .5.10 Frequency Deviation of area 1 for 1% load change in area 2 (HS)45
Fig .5.11 Frequency Deviation of area 2 for 1% load change in area 2 (HS)45
Fig .5.12 Tie line Deviation for 1% load change in area 2 (HS)46
Fig .5.13 Frequency Deviation for 1% load change in area 2 (TLBO)47
Fig .5.14 Frequency Deviation of area 2 for 1% load change in area 2 (TLBO)47
Fig .5.15 Tie line deviation for 1% load change in area 2 (TLBO)48
Fig .5.16 Frequency Deviation of area 1 for 1% load change in area 2 (SCA)49
Fig .5.17 Frequency Deviation area 2 for 1% load change in area 2 (SCA)49
Fig .5.18 Tie line power deviation for 1% load change in area 2 (SCA)50
Fig .5.19 Frequency Deviation of area 1 for 1% load change in area 1 & 2 (HS)52
Fig .5.20 Frequency Deviation of area 2 for 1% load change in area 1 & 2 (HS)53
Fig .5.21 Tie Line Deviation for 1% load change in area 1 & 2 (HS)53
Fig .5.22 Frequency Deviation of area 1 for 1% load change in area 1 & 2 (TLBO)
54
Fig .5.23 Frequency Deviation of area 2 for 1% load change in area 1 & 2 (TLBO)
55
Fig .5.24 Tie Line Deviation for 1% load change in area 1 & 2 (TLBO)55

Fig .5.25 Frequency Deviation of area 1 for 1% load change in area 1 & 2 (SCA).
57
Fig .5.26 Frequency Deviation of area 2 for 1% load change in area 1 & 2 (SCA).
57
Fig .5.27 Tie line Deviation for 1% load change in area 1 & 2 (SCA)58
Fig .5.28 Frequency deviation of area 1 for the uncontrolled and the controlled
case
Fig .5.29 Frequency deviation of area 2 for the uncontrolled and the controlled
case61
Fig .5.30 Tie line deviation for the uncontrolled and the controlled case61

List of Abbreviations

HS Harmony Search Algorithm

TLBO Teaching-Learning-Based Optimization

SCA Sine Cosine Algorithm

I Integral

PI Proportional-Integral

PID Proportional Integral Derivative

PIDA Proportional Integral Derivative Accelerator

LFC Load Frequency Control

AGC Automatic Generation Control

GA Genetic Algorithm

HPSO Hybrid Particle Swarm Optimization

ANN Artificial Neural Network

ICA Imperialist Competitive Algorithm

BFOA Bacteria Foraging Optimization Algorithm

AWPSO Adaptive Weighted Particle Swarm Optimization

DE Differential Evolution

FA Fire Fly

ACE Area Control Error

WECS Wave Energy Conversion System

AWS Archimedes Wave Swing

Thesis Summary

Nowadays a large power system usually comprises of small interconnected power systems each one is called an area so large power system is called a multi area system. Each area is connected to the other one by a tie line. During load change in one area, the frequency and the tie line power of the whole system deviate from the nominal values. The purpose in this thesis is to get the best performance of the system through less deviations.

Three optimization techniques Harmony Search (HS), Teaching Learning Based Optimization (TLBO), and Sine Cosine Algorithm (SCA) were applied on two controllers (PID and PIDA) to optimize the system performance and eliminate the steady state error in the system deviations. Four case studies were done on the system and simulated to observe the best controller and the best algorithm. The system under study is a two area system each area equipped with its own controller.

The first case study is simulated by making 1% increase in the load in area "1" and obtain the optimized parameters of the two controllers and the corresponding response of the system frequency and the tie line power deviations. The second case study is done by making 1% load increase in area "2" while the third case study is simulated by making 1% load increase in area "1" & "2" at the same time.

After obtaining all system's results comparison is done between the three optimization techniques and the two controllers. The results proved that TLBO technique and PIDA controller give the best system performance among the mentioned techniques and controllers. In the fourth case study; Wave Energy Conversion System (WECS) is applied also on the system when equipped with the

PIDA and TLBO and then compared with the uncontrolled case. The system in the controlled case has better response than in the uncontrolled case.

Keywords:

Multi Area System, Load Frequency Control (LFC), Interconnected Power System, Automatic Generation Control (AGC).

CHAPTER ONE INTRODUCTION

1.1 General

The power system active power mainly dependent on the system frequency while the reactive power is less dependent on it and mainly dependent on the system voltage. So, the active and reactive powers are independent on each other and can be controlled separately. The active power is controlled using the load frequency control loop (LFC) while the reactive power is controlled using the Automatic Voltage Regulator (AVR). Load Frequency Control has gained a great importance with the growth of interconnected power systems so made it much easier to control the system frequency in interconnected power systems [1].

The Automatic Generation Control (AGC) usually comprises of load frequency control, economic dispatch, and interchange scheduling. The speed governors of all machines sense the mechanical outputs and the frequency will be changed automatically to match with the combined generation of new combined load. This action is called primary frequency regulation.

Subsystems are usually connected together to establish a large scale power system which is called a multi-area system as shown in Fig.1.1. Due to load change in one area, the generators of this area and the generators in other areas are responsible for compensating this change in order to maintain the system frequency at permissible limits to provide acceptable high level of power quality. Due to the load increase in one area, the generators of other areas provide active power in tie lines to help with the generators in this area. The tie line power is preferred to vanish at steady state in order to decrease the system losses.