

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

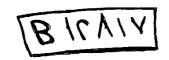
التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار



بالرسالة صفحات لم ترد بالأصل

FATE AND BEHAVIOUR OF SOME TRACE METALS IN TWO SITES: GIRONDE ESTUARY (FRANCE) AND ROSETTA ESTUARY (EGYPT)

THESIS

Submitted to the Faculty of Science Alexandria University for the Degree of Ph. D. in Science (Geological Oceanography)

by

AHMED MOUSTAFA KHADR

Assistant Lecturer Oceanography Department
Faculty of Science Alexandria University
B. Sc. in General Oceanography (1986)
M. Sc. in Geological Oceanography (1992)
Faculty of Science Alexandria University

supervised by

Prof. Dr. Mohamed A. EL SABROUTI
Professor of Geological Oceanography
Faculty of Science
Alexandria University

Prof. Dr. Mahmoud Kh. EL SAYED
Professor of Geological Oceanography
Faculty of Science
Alexandria University

Prof. Dr. Claude LATOUCHE
Professor of Marine Geochemistry
Faculty of Science
Bordeaux I University France

1998

Acknowledgments

The author wishes to express his sincere gratitude to Prof. Dr. Mohamed A. EL SABROUTI, Professor of Geological Oceanography, Faculty of Science, Alexandria University. He was kind enough to follow the progress of the work with keen interest, helpful guidance, useful criticism and continuous encouragement.

I am also indebted to **Prof. Dr. Mahmoud Kh. EL SAYED**, Professor of Geological Oceanography, Faculty of Science, Alexandria University, for supervision, helpful guidance, valuable support and constructive advices during the preparation of the manuscript.

Many thanks are due to **Prof. Dr. Claude LATOUCHE**, Professor of Marine Geochemistry, Faculty of Science, Bordeaux I University, France, because he playes a key role for providing me a study grant through the (Université de Bordeaux I / Ministère Français des Affaires Etrangères) to financially support my field and laboratory studies at the Laboratoire du Département de Géologie et Oceanography, Faculté des Sciences, Université de Bordeaux I, France, during the period from December 1992 to November 1993 and from September 1994 to October 1995. Also, his guidance and advices for field and laboratory search encouraging me during the progress of this work.

My special thanks are due to Miss. N. MAILLET, MRs. LAPAQUELLERIE, LAVAUX, DIGNAN, PARRA, PONS, DUMON, PEDEMAY, JOUANNEAU and ETCHEBER who helped me during the collection of the samples and for their moral support, fruitful help during the laboratory work and their continuos encouragement.

I have great pleasure in expressing my deep gratitude to **Dr. Anwar EL**FIKY and Mr. Adel MAXIMOS. Indeed, this manuscript would loose a great part of its skeleton without thier help.

Finally, I would like sincerely to thank every person of my family without whom nothing of this work would have been accomplished.

TABLE OF CONTENTS

		Ш
Chapter 1. I.	NTRODUCTION	
1. 1.	General Outline	1
1. 2.	Environmental problems with trace elements	2
1. 2. 1.	The sources of metal pollution	5
1. 2. 1. 1.	Geologic weathering	5
1. 2. 1. 2.	Mining	6
1. 2. 1. 3.	Industrial effluents	7
1. 2. 1. 4.	Domestic influence and urban storm water runoff	9
1. 2. 1. 5.	Atmospheric sources	10
1. 2. 1. 6.	Multi sources effects	11
1. 3.	Cadmium	12
1. 3. 1	Natural origin	12
1. 3. 1. 1.	Source rocks	13
1. 3. 1. 2.	Content of cadmium in aquatic systems	14
1. 3. 1. 3.	Content of cadmium in suspended matter	15
1. 3. 2.	Anthropogenic origin	15
1. 4.	Copper	17
1. 5.	Nickel	18
1. 6.	Zinc	18
1. 7.	Environmental role of estuaries	20
1. 8.	Role of sediments in marine environment	24
1. 9.	Aim of the study	26
Chapter 2. A	AREA OF STUDY	
2. 1.	Gironde estuary	28
2. 1. 1.	Geologic context	31
2. 1. 1. 1.	Nature of the catchement basin	32
2. 1. 2.	Morphologic and sedimentary context	32
2. 1. 2. 1.	Fluvial part and upstream of the estuary	32
2. 1. 2. 2.	Downstream part of the estuary	33
2. 1. 3.	Hydrologic context	33

2. 1. 3. 1.	Fluvial flow	35
2. 1. 3. 2.	The Tide	37
2. 1. 4.	Physico-chemical context	41
2. 1. 4. 1.	Salinity	41
2. 1. 4. 2.	Temperature	43
2. 1. 4. 3.	Dissolved oxygen	43
2. 1. 4. 4.	$\mathbf{p}^{\mathbf{H}}$	44
2. 2.	Rosetta estuary	45
2. 2. 1.	Physical context	51
2. 2. 1. 1.	Current pattern	51
2. 2. 1. 2.	Horizontal salinity distribution	52
2. 2. 1. 3.	Horizontal temperature distribution	52
2. 2. 2.	Coastal processes	52
Chapter 3- M.	ATERIALS AND METHODS	
3. 1.	Sampling	54
3. 1. 1.	Gironde estuary	54
3. 1. 2.	Rosetta estuary	59
3. 2.	Analytical methods	63
3. 2. 1.	Grain size analysis	63
3. 2. 2.	Chemical analysis	64
3. 2. 2. 1.	Total calcium carbonate	64
3. 2. 2. 2.	Particulate organic carbon	64
3. 2. 2. 3.	Determination of major and trace elements by X-ray	
	fluorescence spectroscopy	65
3. 2. 2. 4.	Determination of cadmium by G F atomic absorption	
	spectroscopy	66
3. 3.	Analysis of data	68
Chapter 4. R.	ESULTS AND DISCUSSION	
4. 1.	Gironde estuary	73
4. 1. 1.	Grain size analysis	73
4. 1. 1. 1.	Surface sediments	73
4. 1. 1. 2.	Subsurface sediments	73
4. 1. 2. 1.	Total calcium carbonate	75

,

4. 1. 2. 1. 1.	Surface sediments	75
4. 1. 2. 1. 2.	Subsurface sediments	76
4. 1. 3.	Particulate organic carbon	77
4. 1. 3. 1.	Surface sediments	77
4. 1. 3. 2.	Subsurface sediments	77
4. 1. 4.	Major elements	78
4. 1. 4. 1.	Iron oxide	78
4. 1. 4. 1. 1.	Surface sediments	78
4. 1. 4. 1. 2.	Subsurface sediments	79
4. 1. 4. 2.	Aluminum oxide	80
4. 1. 4. 2. 1.	Surface sediments	80
4. 1. 4. 2. 2.	Subsurface sediments	80
4. 1. 4. 3.	Silicon dioxide	81
4. 1. 4. 3. 1.	Surface sediments	81
4. 1. 4. 3. 2.	Subsurface sediments	81
4. 1. 5.	Trace elements	82
4. 1. 5. 1.	Copper	82
4. 1. 5. 1. 1.	Surface sediments	82
4. 1. 5. 1. 2.	Subsurface sediments	83
4. 1. 5. 2.	Nickel	83
4. 1. 5. 2. 1.	Surface sediments	84
4. 1. 5. 2. 2.	Subsurface sediments	84
4. 1. 5. 3.	Zinc	85
4. 1. 5. 3. 1.	Surface sediments	85
4. 1. 5. 3. 2.	Subsurface sediments	85
4. 1. 5. 4.	Cadmium	86
4. 1. 5. 4. 1.	Surface sediments	86
4. 1. 5. 4. 2.	Subsurface sediments	86
4. 2.	Rosetta estuary	98
4. 2. 1	Grain size analysis	98
4. 2. 1. 1.	Surface sediments	98
4. 2. 1. 2.	Subsurface sediments	98
4. 2. 2.	Total calcium carbonate	101

4. 2. 2. 1.	Surface sediments	101
4. 2. 2. 2.	Subsurface sediments	102
4. 2. 3.	Particulate organic carbon	102
4. 2. 3. 1.	Surface sediments	102
4. 2. 3. 2.	Subsurface sediments	103
4. 2. 4.	Major elements	105
4. 2. 4. 1.	Iron oxide	105
4. 2. 4. 1. 1.	Surface sediments	105
4. 2. 4. 1. 2.	Subsurface sediments	105
4. 2. 4. 2.	Aluminum oxide	106
4. 2. 4. 2. 1.	Surface sediments	106
4. 2. 4. 2. 2.	Subsurface sediments	106
4. 2. 4. 3.	Silicon dioxide	108
4. 2. 4. 3. 1.	Surface sediments	108
4. 2. 4. 3. 2.	Subsurface sediments	108
4. 2. 5.	Trace elements	109
4. 2. 5. 1.	Copper	109
4. 2. 5. 1. 1.	Surface sediments	109
4. 2. 5. 1. 2.	Subsurface sediments	110
4. 2. 5. 2.	Nickel	112
4. 2. 5. 2. 1.	Surface sediments	112
4. 2. 5. 2. 2.	Subsurface sediments	112
4. 2. 5. 3.	Zinc	114
4. 2. 5. 3. 1.	Surface sediments	114
4. 2. 5. 3. 2.	Subsurface sediments	115
4. 2. 5. 4.	Cadmium	116
4. 2. 5. 4. 1.	Surface sediments	116
4. 2. 5. 4. 2.	Subsurface sediments	116
Chapter 5. SU.	MMARY AND CONCLUSIONS	

REFERENCES

APPENDIX

ARABIC SUMMARY

List of Figures

Fig. (1) Exchanges of matter in an idealized estuarine system.	22
Fig. (2) Schematic presentation of types of estuaries.	25
Fig. (3) Location map of Gironde estuary.	29
Fig. (4) Morphologic and sedimentary context of Gironde estuary.	34
Fig. (5) Histogram of annual fluvial flow od Gironde estuary.	36
Fig. (6) Mechanism of sediment stock in Gironde estuary.	39
Fig. (7) Numerical model of sediment accumulation of Gironde estuary.	40
Fig. (8) Longitudinal variation of salinity of Gironde estuary.	42
Fig. (9) Location map of Rosetta estuary.	46
Fig. (10) Longitudinal section showing position of core L'Orme	55
Fig. (11) Longitudinal section showing position of core Pauillac.	56
Fig. (12) Longitudinal section showing position of core Neyran.	57
Fig. (13) Location map showing surface and core of Gironde estuary.	58
Fig. (14) Schematic map showing studied profiles of Rosetta estuary.	60
Fig. (15) Location map showing studied cores of Rosetta estuary.	62
Fig. (16) Values of surface sediments of Gironde estuary.	94
Fig. (17) Values of core L'Orme of Gironde estuary.	95
Fig. (18) Values of core Pauillac of Gironde estuary.	96
Fig. (19) Values of core Neyran of Gironde estuary.	97
Fig. (20) Cluster analysis of Gironde estuary.	97'
Fig. (21) Values of Profile 1 Rosetta estuary.	124
Fig. (22) Values of Profile 2 Rosetta estuary.	125
Fig. (23) Values of Profile 3 Rosetta estuary.	126
Fig. (24) Values of Profile 4 Rosetta estuary.	127
Fig. (25) Values of Profile 5 Rosetta estuary.	128
Fig. (26) Values of Profile 6 Rosetta estuary.	129
Fig. (27) Values of core I Rosetta estuary.	130
Fig. (28) Values of core II Rosetta estuary.	131
Fig. (29) Values of core III Rosetta estuary.	132
Fig. (30) Values of core IV Rosetta estuary.	133
Fig. (31) Cluster analysis of Rosetta estuary.	133'

CHAPTER 1 INTRODUCTION

1. 1. General Outline:

No organic life can develop and survive without the participation of metals. Current research has revealed that life is as much inorganic as organic. So, due to the fact that heavy metals entering water ways from either natural or anthropogenic sources become strongly associated with the solid or sediment phase, these materials may accumulate to levels causing a potentially serious threat to the aquatic and benthic organisms. Efforts should be made to elucidate the role of the sediment by examining its adsorbing capacity for metals. Also it is of interest to study some of these metals according to their biological role.

Since the industrial revolution, the efforts of removing man-made pollutants from the natural environment have been unable to keep pace with the increasing amount of waste materials and a growing population that farther exasperates the situation. This has often resulted in the transformation of lakes, rivers and coastal waters into sewage depots where the natural biological balance is severely upset and in some cases totally disrupted (Förstner, 1978)

With the growth of technology, two groups of substances in particular have a lasting effect on the natural balance in aquatic systems:- nutrients, which promote unrestricted biologic growth and, in turn, oxygen depletion, and sparingly degradable synthetic chemicals and other waste substances which often constitute multiple effects on the aquatic ecosystems. Experts estimate that industrial and domestic waste water introduces up to a million pollutants into natural waters. These include substances that are not considered dangerous, although many of them add a disagreable odor or taste to the waters and other significantly upset the ecosystem without being directly

harmful to humans. Other group do, however, have direct and indirect influences on the human organism and can cause serious damage. Substances such as polycyclic aromatics, pesticides, radioactive matter, and trace metals directly endanger human life. This group of pollutants are of note in two respects: firstly, trace metals are not usually eliminated from the aquatic ecosystems by natural processes, in contrast to most organic pollutants, and secondly, most metal pollutants are enriched in minerals and organic substances. Toxic metals such as mercury, cadmium and copper tend to accumulate in bottom sediments from which they may be released by various processes of remobilization, and in changing form can move up the biologic chain, thereby reaching human beings where they produce chronic and acute ailments.

The fact that metals have a biological significance is contradictory to the classical idea that inorganic chemistry is restricted to non-living chemical systems, whereas the living world falls within the realm of organic and biochemistry. Modern research has led to a broader understanding of the inextricability of overlapping ideas in the field of applied chemistry, such as occur in nature, and stresses the need to diverge from artificial compartmentation. It has borne out by experimental evidence that the role of heavy metals in living systems follows the pattern of natural availability and abundance of the same metals occurring in nature (Williams, 1967; Vahrenkamp, 1973 and Wood 1974, 1975).

1.2. Environmental problems with trace elements: