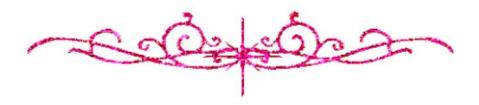


بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم


قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

ACUTE STROKE MANAGEMENT

BICNIA

Thesis

Submitted in partial fulfillment for the requirements of M.D. in Neurology

By

Osama Eid El-Deib

M.B.B.Ch.

M.Sc. Neuropsychiatry
Assistant Lecturer In Neurology
Al-Monofiya University

Under the Supervision

Prof. Dr. Fathi Mahmoud Afifi

Prof. of Neurology, Faculty of Medicine, Al-Azhar University

Prof. Dr. Mohamed El-Bahay Reda

Prof. of Neurology, Faculty of Medicine, Al-Azhar University

Prof. Dr. Mohamed Saeid Abdel-Baki

Prof. of Neurology and Chairman of Neurology Department, Paculty of Medicine, Al-Monofiya University

Faculty of Medicine Al-Azhar University 2000 Funitificities and a second se

ACKNOWLEDGMENT

I always feel indebted to Allah whose blessings on me can not be counted.

I express my sincere and deepest gratitude to Prof. Dr. Fathi Mahmoud Afifi, Prof. of Neurology, Faculty of Medicine, Al-Azhar University, for constant supervision, fruitful discussion, continuous interest and efforts for reading the manuscript.

I am also very much grateful to **Prof. Dr. Mohamed El-Bahay Reda**, Prof. of Neurology, Faculty of Medicine, Al-Azhar University, for his kind supervision, fruitful discussion continuous guidance and efforts for reading the manuscript.

I am also indebted to **Prof. Dr. Mohamed Said Abdel-Baki**, Prof. of Neurology and Chairman of Neurology Department, Faculty of Medicine, Al-Monofiya University, for his kind help throughout the progress of the work.

I would like to express my sincere deepest gratitude to Prof. Dr. Abdel-Latif Moussa Osman, Prof. of Neurology, Chairman of Neurology Department, Faculty of Medicine, Al-Azhar University, for suggesting the points of research, facilitating all difficulties for the clinical work, stimulating discussion and encouragement during development of the work.

I express my sincere thanks to all staff members, colleagues and nursing staff in Neurology Department in Al-Azhar and Al-Monofiya Universities and Naser Institute Hospital, especially Ass. Prof. Dr. Mohamed Elwan, Ass. Prof. Dr. Nabil Hussein, Lecturer Dr. Tarek Minisi, Lecturer Dr. Mohamed Okda, who helped me directly or indirectly throughout the progress of the work.

I am also indebted to our patients who helped me throughout the progress of this work.

Finally, I would like to extend my gratitude to my family, for their currently advice and continuous encouragement and to whom I dedicate this work.

CONTENTS

Subject	Page
List of Tables.	
List of Figures.	
List of Abbreviations.	
CHAPTER I.	
Introduction	. 1
Aim of the work.	3
CHAPTER II. Review of Literature	
1- Pathophysiology	4
1-1- Epidemiology of stroke.	
1-2- Normal and critical limits of cerebral blood flow	
1-3- Ischemic pnumbra	6
1-4- Pathogenesis of ischemic stroke	8
1-5- Vulnerability of the different neuronal tissues	11
1-6- Improvement of ischemic stroke	14
1-7- Fibrinolytic system	
2- Medical therapies of ischemic stroke	19
2-1- Fibrinolytics	22
2-1-1- Tissue plasminogen activator	22
2-1-2- Streptokinase	
2-1-3- Urokinase	24
2-1-4- Seruplase	25
2-1-5- Thrombolysis for myocardial infarction	25
2-1-6- Animal studies	26
2-1-7- Clinical studies	28
2-1-8- Arterial recanalization	31
2-1-9- Complications	40
2-1-10- Time and thrombolytic therapy	46

Subject	Pag
2-1-11- Combined therapy	47
2-1-12- Thrombolytic therapy for dural sinus	
thrombosis	. 49
2-1-13- Thrombolytic therapy for subarachnoid	
hemorrhage	49
2-1-14- Thrombolytic therapy for intracerebral	
hemorrhage	50
2-2- Neuroprotective	51
2-2-1- Glutamate and neuronal damage	51
2-2-2- Neuroprotection and NMDA receptor	53
2-2-3- Neuroprotective agents	53
2-3- Anticoagulants	57
2-3-1- Heparin	57
2-3-2- Oral anticoagulant	63
2-3-3- Platelet antiaggrigants	64
CHAPTER III. Subjects and Methods.	68
CHAPTER IV. Results.	79
CHAPTER V. Discussion.	95
1- Outcome improvement	96
2- Complications	98
2-1- Intracerebral hemorrhage	98
2-2- Reocclusion.	100
2-3- Other complications	101
3- Type of thrombolytics	101
4- Time window	102
5- Dosage	104
6- Quality of life and health care	104
CHAPTER VI. Summary, Conclusions and Recommendations	106
REFERENCES	111
Arabic Summary.	

LIST OF TABLES

Table		Page
1.	Summary of major randomized clinical trials of intravenous thrombolytic therapy for stroke that have been completed	38
2.	Contraindications for Heparinization	60
3.	National Institute of Health Stroke Scale (NIHSS)	72
4.	Characteristics of the 18 thrombolytically treated patients with t-PA (G I)	83
5.	Characteristics of the 15 patients treated with low molecular weight heparin (G II)	85
6.	Comparison between G I and G II, Age, NIHSS and delay in treatment.	87
7.	Comparison between G I & G II as regrads improvement, No and %	88
8.	Comparison between improved and non-improved cases in G I, Age, NIH and delay in treatment	89

LIST OF FIGURES

Figur	·e	Page
1.	Schematic representation of the fibrinolytic system	16
2.	Mechanisms of neuronal death during focal brain ischemia	51
3.	Axial CT scan for P ₅ , who suffered from brain stem manifestation 24 hours after t-PA treatment, without apparent lesion.	90
4.	A T ₂ -weighted MRI taken from P ₅ , 7 days after t-PA treatment, shows Rt thalamic infarction.	90
5.	Axial CT scan for P ₆ before t-PA treatment, without apparent lesion	91
6.	Axial CT scan for P ₆ 24 hours after t-PA treatment shows cerebral hemorrhage.	91
7.	Axial CT scan for P ₁₁ before t-PA treatment, without apparent lesion.	92
8.	Axial CT scan for P ₁₁ , 24 hours after t-PA treatment, shows cerebral hemorrhage.	92
9.	Axial CT scan for P ₁₁ , before low molecular weight heparin treatment, without apparent lesion.	93
10.	Axial CT scan for P ₁₁ , 3 days after starting low molecular weight heparin treatment, shows cerebral hemorrhage	93
11.	Axial CT scan for P ₁₆ , before t-PA treatment, without apparent lesion	94
12.	Axial CT scan for P ₁₆ , 7 days after t-PA treatment, shows H small parietal infarction	94

LIST OF ABBREVIATIONS

AF Atrial fibrillation.

BBB Blood brain barrier.

Ca Calcium.

CBF Cerebral blood flow.

CT Computed tomography.

DVT Deep vein thrombosis.

F Female.

Gp Glyco protein.

ICH Intracerebral hemorrhage.

K Potasium.

Lt Left.

M Male.

MCA Middle cerebral artery.

MRI Magnetic resonance imaging.

Na Sodium.

NIHSS National Institute of Health Stroke Scale.

NINDS National Institute of Neurological Disorders and Stroke.

NMDA N-methyl-D-aspartate.

No Number.

PCA Posterior cerebral artery.

PT Prothrombin time.

PTT Partial thromboplastin time.

rCMRglu regional Cerebral metabolic rate of glucose.

rCMRO₂ regional Cerebral metabolic rate of oxygen.

RIND Reversible ischemic neurologic deficit.

SPECT Single photon emission tomography.

TAP Tandem arterial pathology.

TCD Trancranial doppler.

TIA Transient ischemic attack.

t-PA tissue plasminogen activator.

ttt treatment.

CHAPTER I

INTRODUCTION

CHAPTER I

INTRODUCTION

Many treatments for acute stroke have been devised, but no treatment has yet been conclusively shown to reduce early mortality or disability (Counsell & Sandercock, 1994).

As a result, no clear consensus exists about the appropriate hospital treatment for patients with acute ischemic stroke and substantial variation exists both within and between different countries in the management of stroke (Ricci, 1995).

Such wide variation in practice reflect, at least in part, the lack of generally convincing evidence about the balance of benefit and risk of many treatments (Chen, 1996).

It has to be stressed that the time lag from onset to treatment is the crucial denominator for therapeutic success. Attempts to apply treatment as early as possible requires immediate reliable diagnosis for cerebral ischemia in presumed patients (Kriegen & Hocke, 1996).

Computed tomography scanning is still the most widely used tool in clinical centers hospitalizing stroke patients, and it is unlikely to be routinely replaced by other imaging devices in the next years. This stresses the urgent need both for reaching for a general consensus on the criteria for identification of early CT signs and for the widest possible diffusion of this expertise (Toni, 1996). However, ultrafast diffusion/perfusion MRI can