

تأثيرات المكملات مساعد الإنزيم كيم ١٠ و فيتامين (هـ) على التشنجات التي يسربها البنتيلين تترازول و التحمور الإحراكي الناجو عن الغينيتوين في الجرخان

رسالة معدمة من الصيدلانية

مروة مدمد نجيب فعمي

ماجستبر علوم صبدلیه، جامعة عین شمس (۲۰۱۳) مدرس مساعد علم الأدوية والسموم، كلية الصيدلة، جامعة مصر الدولية رسالة مقدمة الستكمال متطلبات الحصول على درجة الدكتوراة في العلوم الصيدلية (علم الأدوية والسموم)

تحت إشراف

أ.د/ سمية ابراميم مسعود

أستاذ ورئيس قسم الصيدلة الإكلينيكية أستاذ متفرغ ورئيس قسم علم الأدوية الإكلينيكي، كلية الطب، جامعة عين شمس

اً.د/ نبوی هلا رومین اے.أ

كلية الصيدلة، جامعة عين شمس

د/ ماریان جورج تادرس

أستاذ مساعد علم الأدوية والسموم كلية الصيدلة، جامعة عين شمس

د/ رانیا محمد رحمو

مدرس علم الأدوية والسموم كلية الصيدلة، جامعة مصر الدولية كلية الحيدلة – جامعة عين همس $(\Gamma \cdot 1 \Lambda)$

Effects of Coenzyme Q 10 and Vitamin E supplementation on Pentylenetetrazole-induced seizures and Phenytoin-induced cognitive impairment in rats

Thesis presented by

Marwa Mohamed Nagib Fahmy

M.Sc., Ain Shams University (2013) Assistant Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University

Submitted for fulfillment of PhD degree in Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Under the supervision

Dr. Nagwa Ali Sabri

Professor and Head of Clinical Pharmacy

Department, Faculty of Pharmacy,

Ain Shams University

Dr. Somaia Ibrahim Masoud

Professor and Former Head of Clinical

Pharmacology Department, Faculty of

Medicine, Ain Shams University

Dr. Mariane George Tadros

Assistant Professor of Pharmacology and Toxicology

Faculty of Pharmacy, Ain Shams University

Dr. Rania Mohamed Rahmo

Lecturer of Pharmacology and Toxicology

Faculty of Pharmacy, Misr International University

Faculty of Pharmacy-Ain Shams University (2018)

Examination Board Approval Sheet

Name of Candidate

Marwa Mohamed Nagib Fahmy Abdel Ghani

Title of Thesis

Effects of Coenzyme Q 10 and Vitamin E supplementation on Pentylenetetrazole-induced seizures and Phenytoin-induced cognitive impairment in rats

Submitted to Faculty of Pharmacy, Ain Shams University
Department of Pharmacology and Toxicology

Approved by the committee in charge:

• Dr. Somaia Ibrahim Masoud

Professor and Former Head of Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University.

• Dr. Nemat El-Baz Mohamed

Professor and Former Head of Pharmacology Department, Faculty of Medicine for Girls, Al-Azhar University.

• Dr. Nagwa Ali Sabri

Professor and Head of Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University.

• Dr. Hala Mahmoud Fawzy

Professor and Head of the General Division of Pharmacology Department, National Organization for Drug Control and Research (NODCAR).

• Dr. Mariane George Tadros

Assistant Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Pre-requisite Postgraduate Courses

Besides the work presented in the thesis, the candidate has attended pre-requiste postgraduate courses including the following topics:

Special Courses:

- Clinical Pharmacology
- Pharmacology
- Selected Topics
- Clinical Toxicology

The candidate has successfully passed the examination in these courses and the comprehensive exam with general grade "*Excellent*".

Head of Pharmacology and Toxicology Department Faculty of Pharmacy, Ain Shams University **Prof. Ebtehal El-Demerdash Zaki**

ACKNOWLEDGMENTS

Primarily, I am thankful to Almighty **Allah** for His showers of blessings and granting me the capability to believe in myself and pursue my dreams. Without Him, this achievement would not have been possible. My doctoral work appears in its present form as a result of the support of several people. I would so like to offer my sincere thanks to all of them.

I am extremely indebted to my principal supervisor, **Dr. Nagwa Ali Sabri** Professor and Head of Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University for her patience through the entire duration of the study, enthusiasm, motivation and immense knowledge. Without her supervision, this thesis would not have been possible.

I would also like to express my sincere gratitude to my supervisor, **Dr. Somaia**Ibrahim Masoud, Professor and Former Head of Clinical Pharmacology

Department, Faculty of Medicine, Ain Shams University for the continuous support

of my Ph.D study and related research. Her constructive comments helped me in all
the time of research and writing of this thesis.

Special appreciation and gratitude go to my supervisor **Dr. Mariane George Tadros**, Assistant Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University for her motivation and support during the whole period of the research. Her valuable instructions have served as the major contributor towards the completion of this thesis.

I would also like to acknowledge my supervisor **Dr. Rania Mohamed Rahmo**, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University for her faithful guidance, kind supervision and understanding. I was fortunate to work alongside with her, wishing that our companionship will last forever.

I would like to extend my deepest appreciation to **Dr. Amani Emam Khalifa**, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, seconded to 57357 Children Cancer Hospital as the Scientific Consultant for Pharmacy Affairs for suggesting the point of the thesis and I owe her the utmost degree of gratefulness. It was a great honor to complete this work under her observation.

I wish to sincerely thank **Dr. Hadwa Ali Abdel-khalek**, Lecturer of Histology and Cell Biology, Faculty of Medicine, Ain Shams University for her kind cooperation in the histopathological and immunohistochemical parts and the critical comments throughout the study.

I am also very thankful to the Technical Assistant, **Rabiey Taha** who helped me with every obstacle regarding my practical work.

It is my great pleasure to thank all members of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University and my colleagues in Misr International University who reinforced me and aided me in my way.

My deepest thankfulness is also to **my family**, especially **my mother** for her financial support and continuous prayers to finish this work. She has taught me persistence and high morals. Without her encouragement and genuine care, I could not have finished this thesis.

A special thanks to my husband and love of my life, **Dr. Mohamed Abdelsalam**, who has been a constant source of support and encouragement during the challenges of my thesis. I am truly thankful for having you in my life.

I would like to take the opportunity to gratefully acknowledge my mentor, late Dr. Moushira Ibrahim El Sayed, Professor of Pharmacology and Toxicology and Head of the department Faculty of Pharmacy, Sinai University for her motivation and encouragement. Her profound knowledge and kindness inspired me to pursue my doctoral research in the field of pharmacology. I wish her soul rest in peace.

Last but not the least, this thesis is dedicated to my late father who has been my main source of inspiration. I am most grateful to him, he never stopped giving me all the encouragement I needed to accomplish my dreams. His priceless advices were always pushing me forward. Papa, this is for you, may your soul rest in peace.

Marwa Mohamed Nagib

Table of contents

SUBJECT	PAGE
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
List of Photomicrographs	xi
Abstract	xii

LITERATURE REVIEW

1. Overview	1
2. Classification of epileptic seizures	2
2.1. Partial seizures	2
2.2. Generalized seizures	3
3. Diagnosis	3
4. Seizure triggers	5
4.1. Food additives	5
4.2. Electrolytes imbalance	6
4.3. Environmental toxins and stress	6
5. Pathophysiology of epilepsy	7
5.1. Nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway	8
5.2. Silencing information regulator 1 (SIRT1) pathway	11
5.3. Role of glial cells in epilepsy	14
6. Experimental models	17
6.1. Aluminum hydroxide model	17
6.2. Audiogenic model	17
6.3. Photo-sensitive baboon model	18
6.4. Bicuculine model	19
6.5. Cobalt model	20

6.6. Electric shock seizure model	21
6.7. Gamma-aminobutyric acid (GABA) abstinence	21
6.8. Kainic acid model (KA)	22
6.9. Kindling model	22
6.10. Pentylenetetrazole (PTZ) model	24
6.11. Penicillin model	25
6.12. Pilocarpine model	26
6.13. Zinc model	27
7. Therapy for epilepsy	28
7.1. Antiepileptic drugs (AEDs)	28
7.2. Surgical intervention	31
7.3. Vagal nerve stimulation (VNS)	32
7.4. Deep brain stimulation (DBS)	33
7.5. Transcranial magnetic stimulation (TMS)	33
7.6. The ketogenic diet	34
7.7. Hormones	35
7.8. Natural and complementary therapies	36
7.8.1. Vitamins and minerals	36
7.8.2. Melatonin	37
7.8.3. Polyunsaturated Fatty Acids (PUFAs)	37
7.8.4. Resveratrol	38
7.8.5. Phytocannabinoids (PCBs)	39
8.The drugs used in the current study	40
8.1. DL-alpha-Tocopherol (α-Toc)	40
8.1.1. Chemical properties	40
8.1.2. Pharmacodynamic and pharmacokientic properties	41
8.2. Coenzyme Q10 (CoQ10)	44
8.2.1. Chemical properties	44
8.2.2. Pharmacodynamic and pharmacokientic properties	45
8.3. Phenytoin (PHT)	48
8.3.1. Chemical properties	48
8.3.2. Pharmacodynamic and pharmacokientic properties	49
AIM OF THE WORK	53

MATERIALS AND METHODS

A. Experimental Design	56
B. Materials	59
1. Animals	59
2. Drugs	59
2.1. DL-alpha-Tocopherol (α-Toc)	59
2.2. Coenzyme Q10 (CoQ10)	59
2.3. Pentylenetetrazole (PTZ)	59
2.4. Phenytoin (PHT)	60
3. Antibodies	60
3.1. Ionized calcium binding adaptor molecule 1 (Iba1)	60
3.2. Glial fibrillary acidic protein (GFAP)	60
4.Chemicals and solutions	60
4.1. Bovine Serum Albumin (BSA)	60
4.2. Formalin	60
4.3. Sodium chloride	60
4.4. Potassium dihydrogen phosphate	60
4.5. Sodium dibasic phosphate	60
4.6. Urethane	60
5.Buffers	61
5.1. Phosphate buffer saline (PBS)	61
6. Enzyme-linked immunosorbent assay (ELISA) kits	61
6.1. RayBio® Rat TNF-alpha ELISA Kit (RayBiotech Co., USA)	61
6.2. Rat NF-κB ELISA kit (EIAab, Hubei, P. R. China)	62
6.3. DNA-Binding ELISA Kit (LSBio TM , Seattle, WA, USA)	63
6.4. Nuclear factor-erythroid 2-related factor 2 (Nrf2) ELISA kit (Cloud-Clone	64
Corp., USA)	
6.5. Protein assay kit (Bio-rad Laboratories, Inc., California, USA)	64
7. Reverse transcription polymerase chain reaction (RT-PCR) kits	65
7.1. RNeasy Mini Kit (Qiagen N.V., Hilden, Germany)	65
7.2. High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,	65
California, USA)	- -
7.3. SYBR® Green PCR Master Mix (Applied Biosystems, California, USA)	65

8. Apparatuses	66
8.1. Cooling centrifuge	66
8.2. Basic Homogenizer	66
8.3. Microplate reader	66
8.4. Sensitive balance	66
8.5. Real time RT-PCR system	66
8.6. Image analyzer	66
C. Methods	67
♣ Section I	67
1. Behavioral tests	67
1.1. Average Racine score	67
2. Tissue preparation, histopathological examination,	68
immunohistochemical staining and morphometric studies	
2.1. Tissue preparation	68
2.2. Histopathological examination	68
2.3. Immunohistochemical staining	68
2.4. Morphometric studies	69
3. Biochemical tests	70
3.1. Cortical and hippocampal processing	70
3.2. Determination of protein content (Bradford protein assay kit)	70
3.3. Determination of tumor necrosis factor alpha (TNF-α) concentration in rat	72
hippocampal and cortical tissues	
3.4. Determination of nuclear factor kappa B (NF-κB) concentration in rat	76
hippocampal and cortical tissues	
3.5. Determination of nuclear factor-erythroid 2-related factor 2 (Nrf2)	79
concentration in rat hippocampal and cortical tissues	
3.6. Determination of HO-1, NQO1, SIRT 1 and PGC1-α gene expression	86
♣ Section II	94
1. Behavioral tests	94
1.1. Novel object recognition (NOR) test	94
1.2. Elevated plus maze (EPM) test	96
2. Biochemical tests	97
2.1. Determination of VEGF, BDNF, TrkB and CREB gene expression	97

> Statistical analysis	98
------------------------	----

RESULTS

♣ Section I	99
1. Behavioral tests	99
1.1. Effect on PTZ-induced seizure activity	99
2. Histopathological examination, immunohistochemical studies	101
2.1. Histopathological examination	101
2.1.1. Effect on percentage of dark neurons	101
2.2. Immunohistochemical studies	109
2.2.1. Effect on GFAP area percentage	109
2.2.2. Effect on Iba1 area percentage	115
3. Biochemical tests	121
3.1. Inflammatory markers	121
3.1.1. Tumor necrosis factor alpha (TNF-α) concentrations in cortex (CX) and	121
hippocampus (HP) of rats	
3.1.2. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)	125
concentrations in cortex (CX) and hippocampus (HP) of rats	
3.2. Nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway	129
3.2.1. The nuclear levels of Nrf2 in cortex (CX) and hippocampus (HP) of rats	129
3.2.2. Effect on cortical and hippocampal heme oxygenase-1 (HO-1)	133
gene expression	
3.2.3. Effect on cortical and hippocampal NAD(P)H: quinone	137
oxidoreductase-1 (NQO1) gene expression	
3.3. Silencing information regulator 1 (SIRT1) signaling pathway	141
3.3.1. Effect on cortical and hippocampal SIRT1 gene expression	141
3.3.2. Effect on cortical and hippocampal peroxisome proliferator-activated	145
receptor-gamma co-activator 1 alpha (PGC-1α) gene expression	
♣ Section II	149
1. Behavioral tests	149
1.1. Effect on novel object recognition (NOR) test	149
1.2. Effect on elevated plus maze (EPM) test	151
1	

2. Pie ale amie al Acada	1 = 0
2. Biochemical tests	153
2.1. Effect on vascular endothelial growth factor (VEGF) gene expression in	153
prefrontal cortex (PFCX) and hippocampus (HP)	
2.2. Effect on brain derived neurotrophic factor (BDNF) gene expression in	156
prefrontal cortex (PFCX) and hippocampus (HP)	
2.3. Effect on tyrosine receptor kinase B (TrKB) gene expression in prefrontal	159
cortex (PFCX) and hippocampus (HP)	
2.4. Effect on cyclic AMP (cAMP)-responsive element-binding protein (CREB)	162
gene expression in prefrontal cortex (PFCX) and hippocampus (HP)	102
gene expression in prenontal cortex (11°CA) and inppocampus (111')	
DISCUSSION	165
SUMMARY AND CONCLUSIONS	185
REFERENCES	199
ARABIC SUMMARY	

List of Abbreviations

AEDs Anti-epileptic drugs AD Alzheimer's disease

AREs Antioxidant response elements

α-Toc DL-alpha-Tocopherol

AM Amygdala

AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANOVA Analysis of variance **ATP** Adenosine triphosphate

BDNF Brain derived neurotrophic factor

BW Body weight

BSA Bovine serum albumin

CA1 Region I of hippocampus proper CA3 Region III of hippocampus proper

CAMK Calmodulin-dependent protein kinase kinase

CBZ Carbamazepine

cDNA Complementary deoxyribonucleic acid

CoO10 Coenzyme Q10

CREB Cyclic AMP (cAMP)-responsive element-binding protein

CX Cortex

CNS Central nervous system

CT Cycle threshold

DBS Deep brain stimulation

DG Dentate gyrus

DI Discrimination index EEG Electroencephalogram

ELISA Enzyme-linked immunosorbent assay

ETC Electron transport chain
EPM Elevated plus maze

GAD Glutamate decarboxylase

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

GFAP Glial fibrillary acidic protein

GSH Reduced glutathione

GABA Gamma-aminobutyric acid

H&E Hematoxylin & eosin

HP Hippocampus

HO-1 Heme oxygenase-1
HRP Horseradish peroxidase

List of Abbreviations

Iba1 Ionized calcium binding adaptor molecule 1

IgGImmunoglobulin GIL-1βInterleukin-1-beta

KA Kainic acid

MDA Malondialdehyde

mRNA Messenger ribonucleic acid MSG Monosodium glutamate

NAD Nicotinamide adenine dinucleotide

NF-κB Nuclear Factor kappa-light chain enhancer of activated B cells

NMDA N-methyl-D-aspartate
NOR Novel object recognition

NQO1 NAD(P)H:quinone oxidoreductase 1 Nrf2 Nuclear factor-erythroid 2-related factor 2

OD Optical density

PBS Phosphate buffer saline

PHT Phenytoin

PCBs Phytocannabinoids

PGC-1α Peroxisome proliferator-activated receptor-gamma coactivator

1 alpha

PκB α Phosphorylated inhibitory kappa B-α

PUFAs Polyunsaturated fatty acids

PO Per os

PPI Protease and phosphatase inhibitors

PFCX Prefrontal cortex
PTZ Pentylenetetrazole
RNA Ribonucleic acid

ROS Reactive oxygen species

RT-PCR Reverse transcription polymerase chain reaction

SE Status epilepticus SN Substantia nigra

Sir2 Silent information regulator 2

SIRTs Sirtuins

SOD Superoxide dismutase

TL Transfer latency

TLE Temporal lobe epilepsy TMB Tetra methyl benzidine

Tmax Time at which peak serum concentration is reached

TMS Transcranial Magnetic Stimulation

TNF-α Tumor necrosis factor-alpha