

# بسم الله الرحمن الرحيم









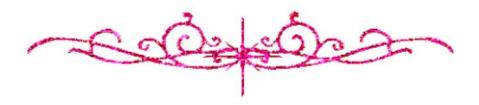
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





## جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم


### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

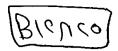


يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار







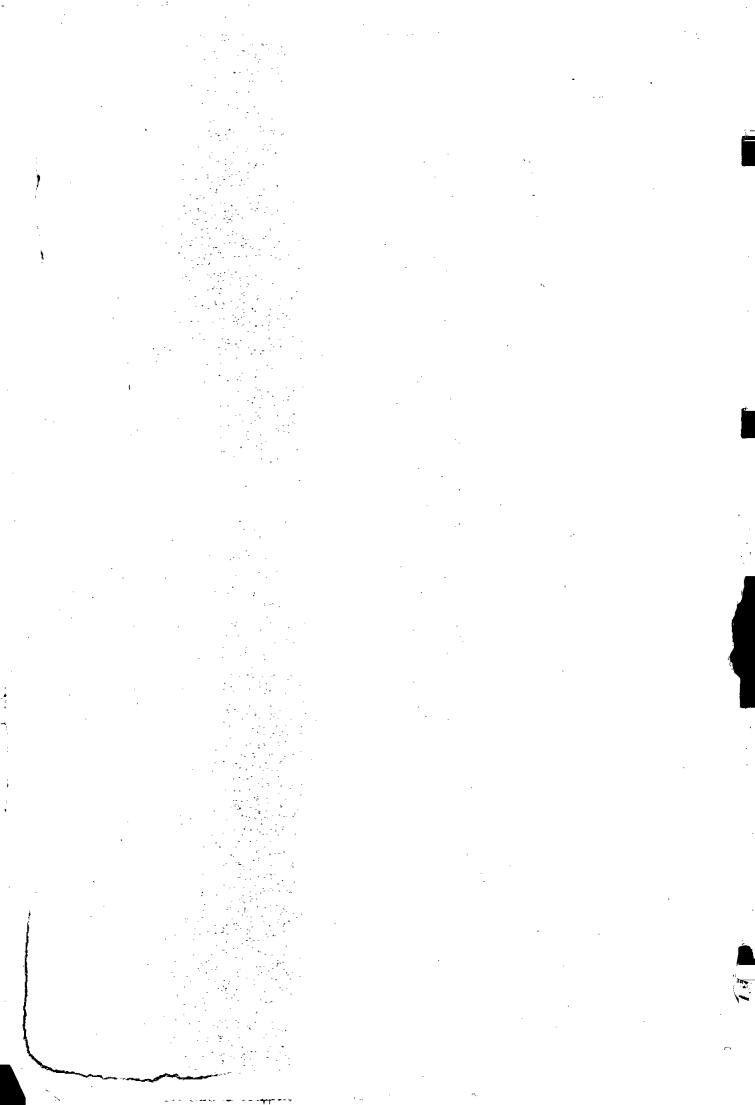





بالرسالة صفحات لم ترد بالأصل






### FINITE ELEMENT STUDY OF THE BEHAVIOR OF STONE COLUMNS

by

Dahlia Hisham Hussein Hafez B.Sc. in Civil Engineering 2000 Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
CIVIL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT January 2003



## FINITE ELEMENT STUDY OF THE BEHAVIOR OF STONE COLUMNS

by

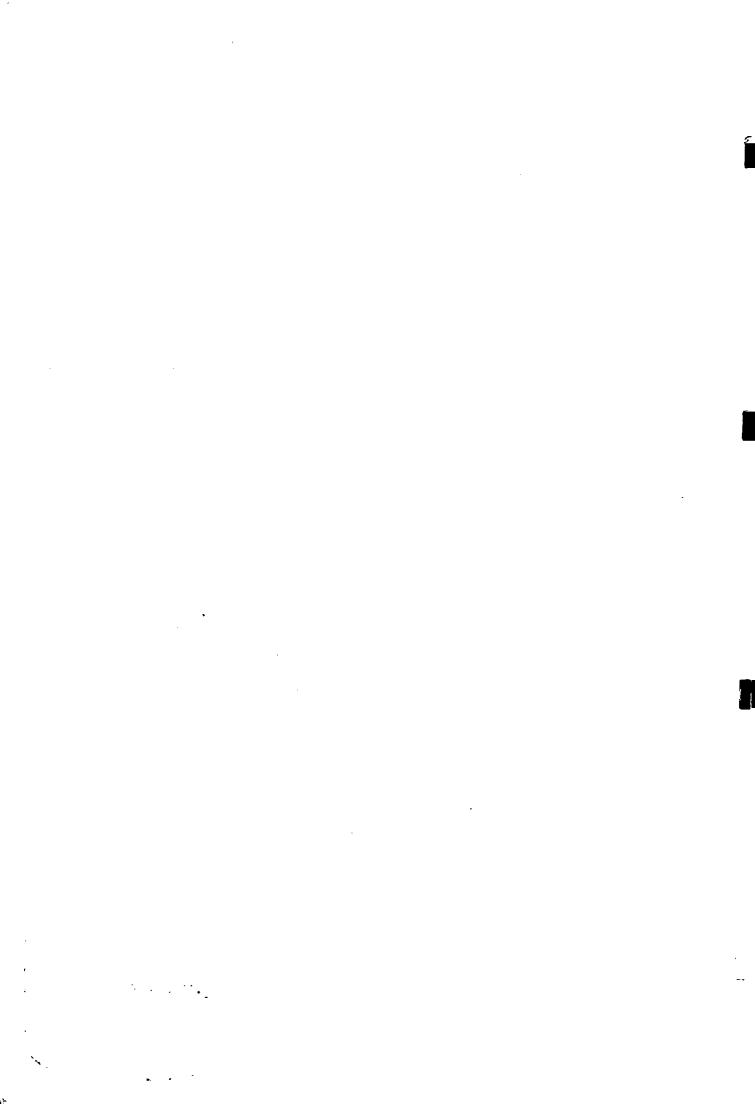
Dahlia Hisham Hussein Hafez B.Sc. in Civil Engineering 2000 Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
CIVIL ENGINEERING

Under the Supervision of

Prof. Dr. Mostafa El-Sayed Mossaad Dr. Hesham Abdel Wahed El Shazly

Prof/of Soll Mechanics and Foundation Engineering, Faculty of Engineering


Cairo University

Associate Prof. of Soil and Structural

Dynamics,

Construction Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
January 2003



#### FINITE ELEMENT STUDY OF THE BEHAVIOR OF STONE COLUMNS

by

Dahlia Hisham Hussein Hafez B.Sc. in Civil Engineering 2000 Cairo University

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In CIVIL ENGINEERING

Approved by the **Examining Committee:** 

Prof. Dr. Fathallah El Nahhas

Faculty of Engineering

Ain Shams University

Prof. Dr. Mostafa Abdel Hamid Abou Keifa Faculty of Engineering

Cairo University

Prof. Dr. Mostafa El-Sayed Mossaad

Faculty of Engineering

Cairo University

(Thesis Main Advisor)

Dr. Hesham Abdel Wahed El Shazly

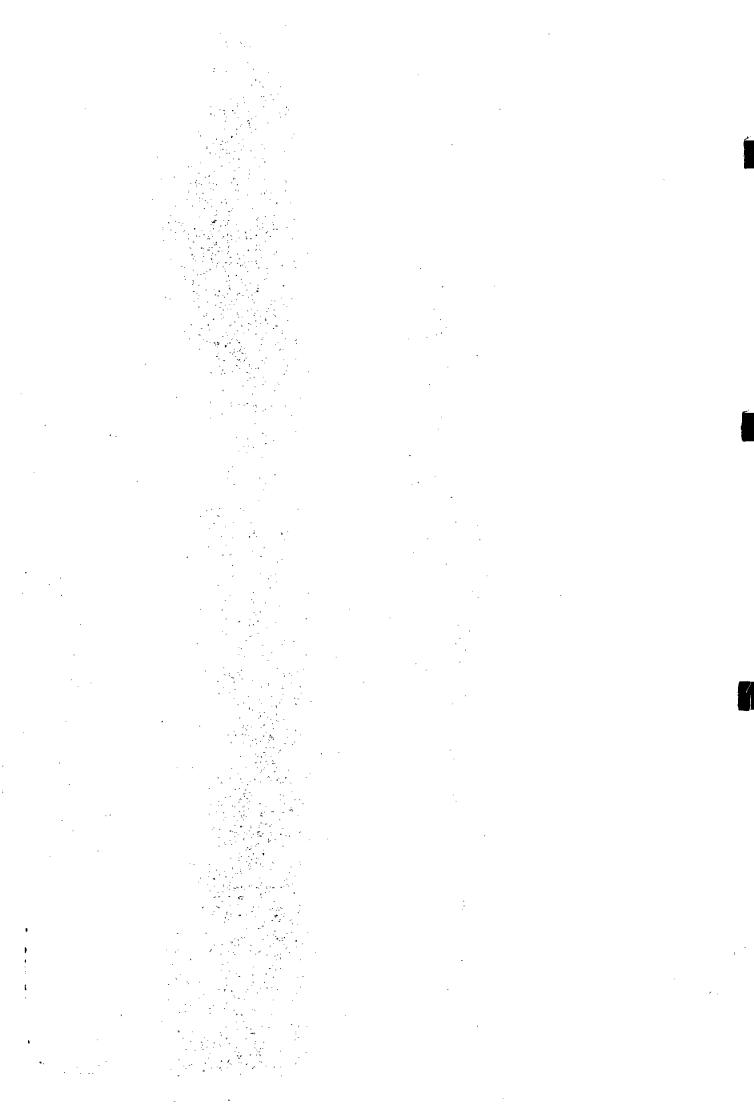
Construction Research Institu

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

January 2003

•

#### **ACKNOWLEDGEMENTS**


I would like to express my deep gratitude to all whom assisted in the completion of this thesis among the faculty staff and my family.

I am very grateful to my supervisor Professor Mostafa E. Mossaad for his support and continuous encouragement. His remarkable devotion in his teaching and research work has inspired me to thrive for the best.

I would like to express my deepest gratitude to Dr. Hesham A. El-Shazly who continuously guided my studies in this research. I will always remember his sincere support, valuable reviewing and discussions.

I am also grateful to all staff members of the Soil Mechanics and Foundation Engineering Division. My special thanks go to Professor Magda M. Abdel Rahman for her encouragement and strong support. I would like also to extend my thanks to Professor Mamdouh A. Sabry, Professor Mostafa A. Keifa and Professor Amr Darrag for their concrete support and their help with data.

Finally, I would like to dedicate this thesis to all my family, especially my parents, and my husband as a slight return for their great support, patience and understanding. My deepest gratitude is to my little boy Hamza.



#### TABLE OF CONTENTS

| ACKNO                                                         | WLEDGE                                | EMENTS                   | i    |        |           |               |     |
|---------------------------------------------------------------|---------------------------------------|--------------------------|------|--------|-----------|---------------|-----|
| TABLE OF CONTENTS  LIST OF TABLES  LIST OF FIGURES  NOTATIONS |                                       |                          |      |        |           |               |     |
|                                                               |                                       |                          |      | ABSTRA | CT        | ·             | xix |
|                                                               |                                       |                          |      | СНАРТЕ | R 1 : INT | RODUCTION     | 1   |
|                                                               |                                       |                          |      | 1.1    | PROBI     | LEM STATEMENT | 1   |
| 1.2                                                           | STUDY                                 | Y OBJECTIVES             | 1    |        |           |               |     |
| 1.3                                                           | SCOPE                                 | E OF WORK                | 3    |        |           |               |     |
| 1.4                                                           | THESI                                 | S ORGANIZATION           | 3    |        |           |               |     |
| СНАРТЕ                                                        | R 2 : LIT                             | ERATURE REVIEW           | 5    |        |           |               |     |
| 2.1                                                           | INTRO                                 | DUCTION                  | - 5  |        |           |               |     |
|                                                               | 2.1.1                                 | Definition               | 5    |        |           |               |     |
|                                                               | 2.1.2                                 | History                  | 5    |        |           |               |     |
| 2.2                                                           | METHODS OF GRANULAR PILE CONSTRUCTION |                          | 6    |        |           |               |     |
|                                                               | 2.2.1                                 | Vibro-Compaction Method  | 6    |        |           |               |     |
|                                                               | 2.2.2                                 | Vibro-Replacement Method | 6    |        |           |               |     |
|                                                               | 2.2.3                                 | Vibro-Compozer Method    | 9    |        |           |               |     |
|                                                               | 2.2.4                                 | Cased-Borehole Method    | 9    |        |           |               |     |
| 2.3                                                           | BEARI                                 | NG CAPACITY ANALYSES     | 11   |        |           |               |     |
| 2.4                                                           | SETTLEMENT ANALYSES                   |                          | 18   |        |           |               |     |
|                                                               | 2.4.1                                 | Greenwood Method         | . 18 |        |           |               |     |
|                                                               | 2.4.2                                 | Priebe Method            | 18   |        |           |               |     |
|                                                               | 2.4.3                                 | Equilibrium Method       | 22   |        |           |               |     |

|         | 2.4.4 Incremental Method                             | 23 |  |
|---------|------------------------------------------------------|----|--|
|         | 2.4.5 Granular Wall Method                           | 26 |  |
|         | 2.4.6 Numerical Methods                              | 26 |  |
| ٠       | 2.4.7 Estimation of Rate of Consolidation            | 28 |  |
| 2.5     | SLOPE STABILITY ANALYSES                             |    |  |
| ,       | 2.5.1 Profile Method                                 | 29 |  |
|         | 2.5.2 Average Shear Strength Method                  | 30 |  |
|         | 2.5.3 Lumped Parameter Method                        | 33 |  |
| 2.6     | STONE COLUMN BEHAVIOR USING NUMERICAL                |    |  |
|         | METHODS                                              | 34 |  |
|         | 2.6.1 Performance of a Stone Column Foundation       | 34 |  |
|         | 2.6.2 Effect of Sand Piles on Stress Contours        | 37 |  |
|         | 2.6.3 Nonlinear Mechanism of Clay-Sand Column System |    |  |
|         |                                                      | 38 |  |
|         | 2.6.4 Spatial Analysis of Column Groups              | 39 |  |
|         | 2.6.5 Special Column Types                           | 39 |  |
| 2.7     | EXPERMENTAL STUDIES OF STONE COLUMN                  |    |  |
|         | BEHAVIOR                                             | 40 |  |
|         | 2.7.1 Laboratory Test Studies                        | 40 |  |
|         | 2.7.2 Model Studies                                  | 42 |  |
| СНАТРЕІ | R 3 : EFFECT OF INSTALLATION PROCESS ON STONE        |    |  |
|         | COLUMNS – SOIL SYSTEMS                               | 44 |  |
| 3.1     | INTRODUCTION                                         | 44 |  |
| 3.2     | LOAD TEST AND FIELD CONDITIONS                       | 45 |  |
|         | 3.2.1 Project Description                            | 45 |  |
|         | 3.2.2 Site Conditions                                | 46 |  |
|         | 3.2.3 Stone Columns as an Improvement Technique      | 46 |  |