

Ain Shams University Faculty of Engineering Department of Structural Engineering

Behavior of Bored Tunnels in Egypt Soft Clays

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

Submitted by

Amr Mohamed Abd Elhai Elshanawany

Graduate M.Sc. Student, Structural Engineering Department, Ain Shams University

Supervised by

Prof. Dr. Fathalla Mohamed El-Nahhas

Professor of Geotechnical Eng. & Foundations, Faculty of Engineering Ain Shams University

Dr. Mohamed Farouk Mansour

Associate Professor,
Department of Structural Engineering
Faculty of Engineering,
Ain Shams University

December 2018

Ain Shams University Faculty of Engineering Department of Structural Engineering

APPROVAL SHEET

Name : Amr Mohamed Abd Elhai Elshanawany

Thesis Title : **Behavior of Bored Tunnels in Egypt Soft Clays**Degree : **Master of Science in Civil Engineering (Structural)**

EXAMINER COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Ahmed Mosalem Samieh Monazaa Professor of Geotechnical Engineering, Civil Engineering Department, Faculty of Engineering, Helwan University, Egypt (External Examiner)	
Prof. Dr. Ali Abd El Fattah Ahmed Professor of Geotechnical Engineering, Structural Engineering Department, Faculty of Engineering, Ain Shams University, Egypt (Internal Examiner)	
Prof. Dr. Fathalla Mohamed El-Nahhas Professor of Geotechnical Engineering, Structural Engineering Department, Faculty of Engineering, Ain Shams University, Egypt (Supervisor)	
Dr. Mohamed Farouk Mansour Associate Professor, Structural Engineering Department, Faculty of Engineering, Ain Shams University, Egypt (Supervisor)	
Date: / /2018	

Ain Shams University Faculty of Engineering Department of Structural Engineering

Name : Amr Mohamed Abd Elhai Elshanawany

Thesis Title : Behavior of Bored Tunnels in Egypt Soft Clays
Degree : Master of Science in Civil Engineering (Structural)

SUPERVISORS COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Fathalla Mohamed El-Nahhas	
Professor of Geotechnical Engineering,	
Structural Engineering Department,	
Faculty of Engineering,	
Ain Shams University, Egypt	
,	
Dr. Mohamed Farouk Mansour	
Associate Professor,	
Structural Engineering Department,	
Faculty of Engineering,	
Ain Shams University, Egypt	
V - CV I	
Date: / /2018	

Postgraduate Studies

Authorization stamp: The thesis is authorized at / / 2018

College Board approval / 2018

University Board approval / 2018

CURRICULUM OF VITAE

Name: Amr Mohamed Abd Elhai Elshanawany

Date of Birth: 20 January, 1982

Place of Birth: Cairo, Egypt

Nationality: Egyptian

University Degree: B.Sc. in Civil Engineering, Faculty of Engineering,

Helwan University, 2003.

Current Job: Senior Geotechnical Engineer

DECLARATION

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering (Structural Engineering). The work included in this thesis was carried out by the author in the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt. No part of this thesis has been submitted for a degree or qualification at any other university or institution.

Name:	Amr Mohamed Abd Elhai Elshanawany
Signature:	
Date:	

ACKNOWLEDGMENTS

I wish to express my gratitude to Prof. Dr. Fathalla El-Nahhas, Professor of Geotechnical Engineering and Foundation and Dr. Mohamed Farouk Mansour, Associate Professor in the Structural Engineering Department, Ain Shams University for their kind supervision, sincere assistance and valuable guidance during the preparation of this thesis.

This thesis could not have been completed without the greatest supports and love from my family and my friends throughout the study.

Ain Shams University Faculty of Engineering

Department of Structural Engineering

M.Sc. Thesis submitted by: Amr Mohamed Abd Elhai Elshanawany

Supervisors: Prof. Fathalla M. El-Nahhas and Dr. Mohamed F. Mansour

Title: Behavior of Bored Tunnels in Egypt Soft Clays

.....

ABSTRACT

The primary objective of this research study is to investigate the behavior of a typical bored tunnel crossing Suez Canal at the south of Port-Said City, referred to as Port-Said Tunnel (PST). The tunnel is constructed in a deep very soft to firm clay deposit lying in El-Tina Plain and is known as Port-Said Clay. The Port-Said Clay characterization is based on the results of recent research studies. The available information on the bored tunnel was limited to the method of tunneling which is TBM with slurry support and compensation grouting through the tail, geometric configuration and boring diameter. No field measurements were available for use in this research study.

The interaction between PST and Port-Said Clay is investigated by numerical analysis. The finite difference-based program FLAC 7.0 is utilized in the analyses. The constitutive behavior of Port-Said Clay is described using the modified cam clay (MCC) model. Due to the absence of field measurements for the typical bored tunnel under investigation, verification of the numerical model results is carried out by simulating the behavior of a bored tunnel in similar ground conditions in eastern Canada (Thunder Bay Tunnel) using the same numerical method and the same constitutive model. The numerical analysis results are compared with the available field measurements.

The parametric study on the behavior of PST in Port-Said Clay involved investigating the effects of different face and grouting pressures on the short and long-term behaviors. A hybrid tunneling modeling approach is adopted. The Gap approach is utilized to simulate the volume loss due to shield advance, and the grout pressure method is used to simulate the application of annular grouting. The tunneling behavior is investigated during three phases simulating the shield advance, application of grouting, and long-term behavior.

The results of the analysis are presented in terms of the stress fields, pore pressure response, strain fields, displacement fields, ground displacement and lining straining actions.

The results of the analysis showed a significant effect of the variation of the face and grouting pressures on the tunnel's short and long-term behaviors. The grouting pressure is the primary factor that governs the long-term behavior. The results are compared to some published field measurements and show a reasonable match.

<u>Keywords:</u> Bored tunneling, soft clay, Port-Said Clay, numerical analysis, Gap approach, long-term behavior

TABLE OF CONTENTS

ACKN(OWLEDGMENTS	I
ABSTR	RACT	II
TABLE	E OF CONTENTS	IV
LIST O	OF FIGURES	VI
LIST O	OF TABLES	XII
LIST O	OF SYMBOLS	XIII
LIST O	OF ABBREVIATIONS	XVII
СНАРТ		
1.1	General	
1.2	Statement of the Problem	
1.3	Research Objectives	
1.4	Research Plan	
1.5	Thesis Outline	
СНАРТ	TER(2) BORED TUNNELING IN SOFT CLAY	6
2.1	Historical Evolution of Tunneling Techniques	6
2.2	Sources of Ground Subsidence (Settlement) Due to Bored Tunneling	9
2.3	Tunnel Face Stability and Face Pressure	12
2.4	Prediction of Settlement Due to Tunneling	18
2.5	The Ground Reaction Curve for Loads on Linings	24
2.6	Modeling Approaches for Shielded Tunnels in Two-Dimensional Analysis	28
2.7	Stress and Strain Fields around Tunnels	35
2.8	Case Histories for Tunneling in Clay	42
СНАРТ	TER(3) VERIFICATION MODEL FOR A BORED TUNNEL IN SOFT CLAY (C	ASE OF THUNDER BAY
TU	UNNEL) 46	
3.1	Introduction	46
3.2	Geological History	47
3.3	Finite Difference in Brief	47
3.4	Thunder Bay Tunnel (TBT)	49
3.5	Subsurface Conditions and Soil Properties	56
3.6	Verification Models	60
3.7	Setup of The Numerical Model	66
3.8	Analysis Results	70
3.9	Applicability of Using Modified Cam Clay Constitutive Model	96
3.10	Summary and Conclusions	103

CHAPTER(4)	PREDICTION OF TUNNEL BEHAVIOR FOR TUNNELS UNDER SUEZ CANAL AT PORT
SAID	105

4.1		105
4.1	Introduction.	
4.2	Geology of El-Tina Plain	106
4.3	Port-Said Tunnels (PST) under Suez Canal	107
4.4	Subsurface Conditions	109
4.5	Critical State Model Parameters (Modified Cam Clay Model)	111
4.6	Construction of the Ground Reaction Curve (GRC)	112
4.7	Estimation of Volume Loss during Shield Advance	114
4.8	Numerical Analysis of Port-Said Tunnels (PST)	119
4.9	Analysis Results	128
4.10	Comparison with measurements and literature	170
4.11	Lack in 2D modelling of tunnels and its effect on the results	174
4.12	Summary and Conclusions	176
СНАРТ	ER(5) SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE STUDIES	180
5.1	Summary	180
5.2	Conclusions	182
5.3	Recommendations for Future Studies	185
REFER	ENCES	186
ملخص		198

LIST OF FIGURES

Figure 2.1 Illustration of box shield used by Brunel in 1806	6
Figure 2.2 Illustration of screw shield used by Brunel in 1818	7
Figure 2.3 Methods of supporting the ground and groundwater pressure at the face, Mechanised shield tunneling 2 nd edition (2009)	8
Figure 2.4 Components of shield tunneling settlement, after ITA/AITES Report (2006)	10
Figure 2.5 Circular and spherical failure mechanism, after Krause (1987)	14
Figure 2.6 The tunnel face stability model of the method of Anognoustou and Kovari (1993 and 1994)	15
Figure 2.7 Nomograms for the dimensionless coefficients F ₀ to F ₃ , after Anognoustou and Kovari (1996)	16
Figure 2.8 Two-dimensional blow out model including shear stress along soil column boundaries, (Broere, 2001)	17
Figure 2.9 Wedge model for safety against blow out (Balthaus, 1989)	18
Figure 2.10 Relation between the width of settlement trough, i/R , and the normalized depth to tunnel centerline, $z/2R$ (Peck, 1969)	19
Figure 2.11 Ground response curves for (a) deep tunnels, and (b) shallow tunnels in different grounds, modified after Pacher (1964)	25
Figure 2.12 Ground response curves for time-dependent interaction between ground and lining, after Pacher (1964)	27
Figure 2.13 Illustration of the Gap method, modified after Rowe et al. (1983)	30
Figure 2.14 Stress reduction method with ground loss control adopting Ground Reaction Curve, modified after Addenbrooke et al. (1997)	32
Figure 2.15 Illustration of the calculation phases of the contraction method, modified after Vermeer and Brinkgreve (1993)	33
Figure 2.16 Illustration of the grout pressure method, Möller and Vermeer (2008)	35
Figure 2.17 Stress path from typical elements in soil due to tunneling, Ng and Lo (1985)	36
Figure 2.18 Contour maps of strains: a) volumetric strain; and b) maximum shear strain, after Eisenstein et al. (1981)	38
Figure 2.19 Pattern of plastic zones around the experimental tunnel in Edmonton, Canada, after El-Nahhas (1980)	39
Figure 2.20 Contours of strain around tunnel: a) vertical strain, ε_v ; b) horizontal strain, ε_h , and c) shear strain, γ_{vh} , after Lee and Rowe (1989)	41
Figure 3.1 Two-dimensional finite difference grid	48
Figure 3.2 Details of TBT lining, after Morton et al., (1977)	50
Figure 3.3 Tunnel location, after Palmer and Belshaw (1980)	51
Figure 3.4 TBT Instrumentation Plan, after Palmer and Belshaw (1980)	54

Belshaw (1980)	55
Figure 3.6 Composite section showing piezometers and piezometric head after 1 Year, after Palmer and Belshaw (1980)	
Figure 3.7 Soil profile and summary of test results at array 2, after Palmer and Belshaw (1980)	58
Figure 3.8 General soil properties for Array 2, after Ng (1984)	59
Figure 3.9 Soil profile and parameters along Array 2, Modified after Ng (1984)	63
Figure 3.10 Typical hydraulic parameters for soils and rock, (Delleur, 1999)	64
Figure 3.11 Model configuration and boundary conditions	67
Figure 3.12 Model mesh	67
Figure 3.13 Total Vertical stress field (short term)	71
Figure 3.14 Total Vertical stress field (long-term - permeable lining)	71
Figure 3.15 Total Vertical stress field (long-term - impermeable lining)	72
Figure 3.16 Total Horizontal stress field (short term)	72
Figure 3.17 Total Horizontal stress field (long-term - permeable lining)	73
Figure 3.18 Total Horizontal stress field (long-term - impermeable lining)	73
Figure 3.19 Total Vertical stress profile through the vertical axis of the tunnel	74
Figure 3.20 Total Horizontal stress profile through tunnel horizontal axis	75
Figure 3.21 Total Vertical stress profile through tunnel horizontal axis	75
Figure 3.22 Total Horizontal stress profile through the vertical axis of the tunnel	7 <i>6</i>
Figure 3.23 Pore water pressure field (short term)	80
Figure 3.24 Pore water pressure field (long-term - permeable lining)	80
Figure 3.25 Pore water pressure field (long-term - impermeable lining)	81
Figure 3.26 Pore water pressure profile along the vertical axis of the tunnel	82
Figure 3.27 Pore water pressure profile along the tunnel horizontal axis	83
Figure 3.28 Shear strain field (short term)	85
Figure 3.29 Shear strain field (long-term - permeable lining)	85
Figure 3.30 Shear strain field (long-term - impermeable lining)	86
Figure 3.31 Vertical displacement field (short-term)	87
Figure 3.32 Vertical displacement field (long-term - permeable lining)	87
Figure 3.33 Vertical displacement field (long-term - impermeable lining)	88
Figure 3.34 Horizontal displacement field (short term)	88
Figure 3.35 Horizontal displacement field (long-term - permeable lining)	89
Figure 3.36 Horizontal displacement field (long-term - impermeable lining)	89
Figure 3.37 Vertical displacement profile along the vertical axis of the tunnel	90

Figure 3.38 Horizontal displacement profile along the vertical locus of the spring line	91
Figure 3.39 Surface settlement trough	93
Figure 3.40 Variation of pore water pressure with time for an impermeable lining	95
Figure 3.41 Variation of vertical crown displacement and maximum surface displacement with time for an impermeable lining	96
Figure 3.42 Illustration of the Modified Cam Clay model concept in the p'-q space (after Roscoe and Burland, 1968).	98
Figure 3.43 Illustration of the Modified Cam Clay model concept in the v-ln p' space (after Roscoe and Burland, 1968).	98
Figure 3.44 Correlation of the swelling index C _s , with the natural moisture content (w) and liquid limit (LL) for lacustrine soft clay soils in southern Germany (data are partially obtained from Scherzinger 1991)	101
Figure 3.45 Ground surface trough for Modified Cam Clay model and observed settlement	102
Figure 4.1 General location of the proposed tunnels on Egypt's map, after Rizos' et al. (2018)	106
Figure 4.2 Port-Said roadway tunnels alignment	108
Figure 4.3 Port-Said roadway tunnels profile	108
Figure 4.4 Port-Said roadway tunnels cross section	108
Figure 4.5 Crown displacement versus the tunnel stress as a percent from the initial stress	113
Figure 4.6 Shear strain around the tunnel at 90% of the initial stresses	114
Figure 4.7 Shear strain around the tunnel at 85% of the initial stresses	114
Figure 4.8 Shear strain around the tunnel at 82% of the initial stresses	114
Figure 4.9 Demonstration of volume loss around the shield due to slurry and grout flow, after Bezuijen and Bakker's (2007)	118
Figure 4.10 Variation of total volume loss with face pressure	
Figure 4.11 Idealized soil profile and parameters used in the numerical analysis	123
Figure 4.12 Variation of boundary displacement with the model half-width	124
Figure 4.13 Model configuration and boundary conditions	125
Figure 4.14 Grouting pressure simulation (Möller and Vermeer, 2008)	127
Figure 4.15 Total Vertical stress profile for pressure 200kPa	129
Figure 4.16 Total Vertical stress profile for pressure 225kPa	129
Figure 4.17 Total Vertical stress profile for pressure 250kPa	130
Figure 4.18 Total Vertical stress profile for pressure 275kPa	130
Figure 4.19 Total Vertical stress profile for pressure 300kPa	131
Figure 4.20 Total Vertical stress for different pressures near the crown	132
Figure 4.21 Total Vertical stress for different pressures near the invert	133

Figure 4.22 Total horizontal stress profile for pressure 200 kPa	134
Figure 4.23 Total horizontal stress profile for pressure 225 kPa	135
Figure 4.24 Total horizontal stress profile for pressure 250 kPa	135
Figure 4.25 Total horizontal stress profile for pressure 275 kPa	136
Figure 4.26 Total horizontal stress profile for pressure 300 kPa	136
Figure 4.27 Total horizontal stress at different pressures near the spring line	137
Figure 4.28 variation of pore water pressure above tunnel vertical axis for different phases at pressure 200 kPa	139
Figure 4.29 variation of pore water pressure above tunnel vertical axis for different phases at pressure 225 kPa	139
Figure 4.30 variation of pore water pressure above tunnel vertical axis for different phases at pressure 250 kPa	140
Figure 4.31 variation of pore water pressure above tunnel vertical axis for different phases at pressure 275 kPa	140
Figure 4.32 Variation of pore water pressure with depth below ground surface in different phases for face/grouting pressure of 300 kPa	141
Figure 4.33 variation of pore water pressure along the tunnel horizontal axis for different phases at pressure 200 kPa	143
Figure 4.34 variation of pore water pressure along the tunnel horizontal axis for different phases at pressure 225 kPa	143
Figure 4.35 variation of pore water pressure along the tunnel horizontal axis for different phases at pressure 250 kPa	144
Figure 4.36 variation of pore water pressure along the tunnel horizontal axis for different phases at pressure 275 kPa	144
Figure 4.37 variation of pore water pressure along the tunnel horizontal axis for different phases at pressure 300 kPa	145
Figure 4.38 Scale for shear strain contours from FLAC output	147
Figure 4.39 Shear strain contours around the tunnel for face/grouting pressure of 200 kPa a) Phase 1, b) Phase 2, c) Phase 3	147
Figure 4.40 Shear strain contours around the tunnel for face/grouting pressure of 225 kPa a) Phase 1, b) Phase 2, c) Phase 3	147
Figure 4.41 Shear strain contours around the tunnel for face/grouting pressure of 250 kPa a) Phase 1, b) Phase 2, c) Phase 3	148
Figure 4.42 Shear strain contours around the tunnel for face/grouting pressure of 275 kPa a) Phase 1, b) Phase 2, c) Phase 3	148
Figure 4.43 Shear strain contours around the tunnel for face/grouting pressure of 300 kPa a) Phase 1, b) Phase 2, c) Phase 3	148
Figure 4.44 Vertical displacement for different phases at a pressure of 200 kPa	151
Figure 4.45 Vertical displacement for different phases at a pressure of 225 kPa	152
Figure 4.46 Vertical displacement for different phases at a pressure of 250 kPa	153

Figure 4.47 Vertical displacement for different phases at a pressure of 275 kPa	. 154
Figure 4.48 Vertical displacement for different phases at a pressure of 300 kPa	. 155
Figure 4.49 Variation of vertical displacement with pressure for phase 1	. 156
Figure 4.50 Variation of vertical displacement with pressure for phase 2	. 156
Figure 4.51 Variation of vertical displacement with pressure for phase 3	. 157
Figure 4.52 Net vertical displacement above the tunnel for different pressures at phase (1)	. 158
Figure 4.53 Net vertical displacement above the tunnel for different pressures at phase (2)	. 158
Figure 4.54 Net vertical displacement above the tunnel for different pressures at phase (3)	. 159
Figure 4.55 observed consolidation settlement in Tokyo, Japan, after Akagi, H. (2014)	. 160
Figure 4.56 Cumulative vertical displacement above the tunnel for different pressures	. 161
Figure 4.57 Settlement trough at the ground surface for face/grouting pressure of 200kPa	. 163
Figure 4.58 Settlement trough at the ground surface for face/grouting pressure of 225kPa	. 163
Figure 4.59 Settlement trough at the ground surface for face/grouting pressure of 250kPa	. 164
Figure 4.60 Settlement trough at the ground surface for face/grouting pressure of 275kPa	. 164
Figure 4.61 Settlement trough at the ground surface for face/grouting pressure of 300 kPa	. 165
Figure 4.62 Net surface displacement due to the application of grouting for different grouting pressures	. 165
Figure 4.63 Bending Moment diagram on lining for the pressure of 200 kPa a) Phase 1, b) Phase 2, c) Phase 3	. 167
Figure 4.64 Bending Moment diagram on lining for the pressure of 225 kPa a) Phase 1, b) Phase 2, c) Phase 3	. 168
Figure 4.65 Bending Moment diagram on lining for the pressure of 250 kPa a) Phase 1, b) Phase 2, c) Phase 3	. 168
Figure 4.66 Bending Moment diagram on lining for the pressure of 275 kPa a) Phase 1, b) Phase 2, c) Phase 3	. 169
Figure 4.67 Bending Moment diagram on lining for the pressure of 300 kPa a) Phase 1, b) Phase 2, c) Phase 3	. 169
Figure 4.68 The variation of maximum bending Moment on lining with different pressures for different phases	. 170
Figure 4.69 Variation of normalized consolidation settlement with distance normalized to tunnel depth from this study and other measurements reported by Shirlaw (1994)	