EFFECT OF SOME SEED SPROUTING ON SOME HAYS USING SALINE WATER ON THE NUTRITIONAL VALUE OF THE PRODUCT

By

ADEL SAID HASSAN ALI

B.Sc. Agric. Sci. (Agric. Production), Fac. Agric., Ain Shams Univ, 2001

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

MASTER OF SCIENCE in

AGRICULTURAL SCIENCES

(Advanced Agriculture systems on Arid Land)

Arid land Agriculture Graduate Studies and Research Institute (ALARI)

Faculty of Agriculture
Ain Shams University

Approval Sheet

EFFECT OF SOME SEED SPROUTING ON SOME HAYS USING SALINE WATER ON THE NUTRITIONAL VALUE OF THE PRODUCT

ADEL SAID HASSAN ALI

B.Sc. Agric. Sci. (Agric. Production), Fac. Agric., Ain Shams Univ, 2001

This Thesis for M.Sc. Degree has been approved by:		
Dr. EL-Metwally Abdallah EL-Metwally		
Prof. Emeritus of Agronomy, Faculty of Agriculture, Cairo University		
Dr. Ayman Farid Abou Hadid		
Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams		
University		
Dr. Usama Ahmed Ali EL-Behairy		
Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams		
University		
Dr. Mamdouh Mohamed Fawzi Abdallah		
Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams		
University		

Date of Examination: 18/10/2018

EFFECT OF SOME SEED SPROUTING ON SOME HAYS USING SALINE WATER ON THE NUTRITIONAL VALUE OF THE PRODUCT

By

ADEL SAID HASSAN ALI

B.Sc. Agric. Sci. (Agric. Production), Fac. Agric., Ain Shams Univ, 2001

Under the supervision of:

Dr. Mamdouh Mohamed Fawzi Abdallah

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University, (Principal Supervisor)

Dr. Usama Ahmed Ali EL-Behairy

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Adel Ahmed Bakr

Senior Researcher of Animal Nutrition, Regional Center for Food and Feed, Agriculture Research Center.

ABSTRACT

Adel Said Hassan Ali: Effect of some Seed Sprouting on Some Hays Using Saline Water on the Nutritional Value of the Product. Unpublished M. Sc. Thesis, Agric. Botany Department, Fac. of Agric., Ain Shams Univ., 2018.

This work was con, ducted to study the effect of Egyptian clover seed etiolated sprouts and barley grain etiolated sprouts mixture with wheat, Egyptian clover, faba bean and rice have using tap and saline water to improve fodder value. Hays were used as media to etiolated sprouts of barley and clover with three seeding densities (10, 20 and 30 g seed / 100g hays). Growing conditions of the system produced between 12.79 to 38.38 kg of fresh fodder and 3.18 to 9.10 kg of dry fodder in 4 days from one kilogram of raw barley grains compared to 13.22 to 38.46 kg of fresh clover fodder and 3.17 to 9.46 kg of dry clover fodder in 4 days from one kilogram of raw clover seeds. The dry fodder per unit seed volume (kg / kg seed) decreased with increasing seed density, Since hays were decreased with increasing seed density but the nutrient content of the fodder especially protein was increased. Barley and clover etiolated sprouts improved quality of hays fodder from faba bean, clover, rice and wheat crop. Lipid, protein and total energy content were increased with increasing barley and clover seeding density while crude fiber was decreased. In vitro dry matter digestibility (IN-VDMD) was decreased with decreasing seed density especially with rice hays (39.92 and 40.57 for barley and clover respectively) and increased with increasing seeding density especially barley grain with faba bean hays (74.77) and clover seed with clover hays (76.28). Fiber fraction (Neutral detergent fiber NDF, Acid detergent fiber ADF, Acid detergent lignin ADL), cellulose and lignin percentage were decreased with increasing seeding density of barley and clover seed, Relative feed value (RFV) was increased with increasing seed density for barley and clover grown on faba bean, clover,

rice and wheat hays. Data was more pronounced for increased clover seed density.

The barley etiolated sprout production system obtained a good quality fresh forage in small area all year around and low cost estimated per ton DM; total digestible nutrients (TDN) and crude protein (CP) compared with hydroponic barely green sprouts while opposite results obtained with etiolated sprout clover compared with alfalfa fodder. Therefore, the system using barley etiolated sprouts especially with rice hays as growing media can recommended as cheap energy (TDN) and protein (CP). In addition, the system saving agricultural lands and partially water consumption for strategy crop production as wheat and corn since its fodder products can produced and grown in small dark area during absence of natural forage. Relative feed value (RFV) increased with increasing seed density for both barley and clover grown on rice, wheat, faba bean and Egyptian clover hays media. The feed cost increased when the Egyptian clover seeds were used for fodder production .Therefore economically speaking, we can recommended for do not use Egyptian clover sprouts where There was a rise in the cost of the product as a result of the high price of Egyptian clover seeds, which amounted to (25 pounds / kg seed), which caused the increase in costs compared to Corn Silage, Alfalfa, Hydroponic Barely its economical of DM and TDN than hydroponic barley and alfalfa .Barley grows less in production costs than green hydroponic barley with less than 50% in addition to its advantage on saving agriculture Lands since. Also for its less water consumption and higher quality nutrient. It was concluded that, the fresh feed barley etiolated sprout technique grown on rice, Egyptian clover, wheat and faba bean hays respectively medium obtained a good quality fresh forage in small area all year around and can be recommend as cheap source of energy (TDN) compared with hydroponic barley and alfalfa. In addition, the technique saving agricultural lands for strategy crop production as wheat and corn and could be produced and grown on roofs in smaller area. In conclusion, the idea of producing barley sprouts is

accepted from the technical point of view. Due to absence of natural forage and these fodder high prices.

Key words: Barley grain, Egyptian clover seed, Faba bean hay, Rice hay, Egyptian clover hay, Wheat hay, Sprout, cost, Return, In vitro, Digestibility, Nutritional value, Fiber fraction.

ACKNOWLEDGEMENT

First of all, great thanks and gratitude be to **ALLAH**, who guide me to this way and assist me in all my life. All words all feeling and praise will not be enough to thank **ALLAH**.

I would like to express my deep gratitude and everlasting thanks to **Prof Dr. Mamdouh Mohamed Fawzy Abdallah**, Professor Emeritus of Vegetable, Horticulture Faculty of Agriculture, Ain Shams University, (main Supervisor) who proposed work plan and provided me encouragement; guidance and continuous support from the initial to the final level . Study. I would also like to thank him for motivation, which has enabled the production of this thesis. All words and feeling are not enough to express how grateful, I am to him.

I would like to express my appreciation and gratitude to **Prof Dr. Usama Ahmed Ali EL-Behairy** Prof. of Vegetable crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University, for his supervision his invaluable aid and illuminating suggestions.

I would like to express my sincere appreciation to **Prof Dr. Adel Ahmed Baker** Senior Researcher of regional center for food and feed, agriculture research center.

For his supervision, his assistance and guidance in my development as a researcher was conducted with continual encouragement.

Gratitude go to the Ain Shams faculty staff .My gratefulness also extends to my work colleagues. For their kindness, help and encouragement that made such work possible.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	VIII
LIST OF ABBREVIATION	IX
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Agricultural by products	4
1.1. Chemical composition	6
1.2 By- products for feed animals	8
2. Seeds for feed animals	10
3. Sprouting process and their effects on Chemical	
composition of the seeds	12
3.1. Changes in dry matter	14
3.2. Changes in carbohydrates	16
3.3. Changes in protein	16
4. Effect sprouted seeds on straw's fiber fraction	18
5. Effect of saline water on seed germination	19
5.1. Effect of germination using saline water on the Chemical	
composition of the seed.	25
6. Sprouts for feed animals and feed efficiency	25
6.1. Sprouting for livestock fodder	26
6.2. History of hydroponic fodder sprouting	26
6.3. Changes in digestibility due to sprouting	28
6.4. Livestock performance from sprouts	30
6.5. Effect on feed intake	31
6.6. Effect on growth performance and weight gain	31
6.7. Effect on feed efficiency	32
6.8. Effect on nutrient digestibility	32
7. Economic of sprouts fodder	33
MATERIAL AND METHODS	35
1. Materials	35

	Page
2. Barely grains and Egyptian clover seeds	35
3. Sprout production method	36
4. Seeding density experiment	37
5. Data recorded	38
6. Chemical composition investigation	38
6.1. Sample preparation	38
6.2. Proximate analysis	39
6.3. Fiber fraction analysis	39
6.4. Determination of cellulose and hemi-cellulose	39
7. In vitro digestibility	39
8. Estimated relative feed value (RFV)	39
9. Etiolated sprout feed cost evaluation	40
10. Estimated sprout feed cost	40
11. Statistical analysis	41
RESULTS AND DISCUSSION	42
1. Sprouts characteristics	42
2. Fodder characteristics	54
3. Chemical composition	63
4. Effect of seeding density In-vitro dry matter digestibility	72
5. Economics of clover and barley etiolated sprouts fodder	74
5.1. Relative feed value (RFV) of clover and barley etiolated	
sprout fodder	74
5.2. Clover and barley etiolated sprout feed cost evaluation	77
SUMMARY	95
REFERENCES	100
ARABIC SUMMARY	128

LIST OF TABLES

No.	
1	Visibility study for commercial production of forage in a
	production period to Constant costs
2	Effect of growing media, soaking water, and seed density
	on Radical and hypocotyl length of Egyptian clover
	etiolated sprouts (combined data of two experiments)
3	Effect of growing media, soaking water, and seed density
	on Radical and shoot length of barley-etiolated sprouts
	(combined data of two experiments)
4	Effect of growing media, soaking water, and seed density
	on fresh and dry weight of Egyptian clover etiolated
	sprouts mg (combined data of two experiments)
5	Effect of growing media, soaking water, and seed density
	on fresh and dry weight of barley etiolated sprouts mg
	(combined data of two experiments)
6	Effect of growing media, soaking water, and seed density
	on sprout length and total dry sprout weight in fodder of
	Egyptian clover etiolated sprouts (combined data of two
	experiments)
7	Effect of growing media, soaking water, and seed density
	on sprout length and total dry sprout weight in fodder of
	barley etiolated sprouts (combined data of two
	experiments)
8	Effect of growing media, soaking water, and seed density
	on percentage of fresh and dry total sprout weight of
	Egyptian clover-etiolated sprouts in fodder (combined data
	of two experiments)
9	Effect of growing media, soaking water, and seed density
	on percentage of fresh and dry total sprout weight of
	barley-etiolated sprouts in fodder (combined data of two
	experiments)

No.		Page
10	Effect of growing media, soaking water, and seed density	
	on fresh and dry forage mass weight of Egyptian clover	
	etiolated sprouts (combined data of two	
	experiments)	55
11	Effect of growing media, soaking water, and seed density	
	on fresh and dry fodder mass weight of barley-etiolated	
	sprouts (combined data of two experiments)	56
12	Effect of growing media, soaking water, and seed density	
	on fresh and dry fodder mass weight (kg/m²) of Egyptian	
	clover-etiolated sprouts (combined data of two	
	experiments)	58
13	Effect of growing media soaking water and seed density on	
	fresh and dry fodder mass weight (kg/m2) of barley-	
	etiolated sprouts (combined data of two experiments)	59
14	Effect of growing media soaking water and seed density on	
	fresh and dry fodder mass weight of Egyptian clover-	
	etiolated sprouts (combined data of two experiments)	61
15	Effect of growing media, soaking water, and seed density	
	on fresh and dry fodder mass weight of barley-etiolated	
	sprouts (combined data of two experiments)	62
16	Effect of soaking in tap water and saline water on rice,	
	wheat, faba bean and Egyptian clover hay media soaking in	
	and drying at 60 $^{\circ}$ C, Tap water and Saline water (NaCl	
	2000ppm) then drying at 60 ° C for 3 day	63
17	Proximate analysis and fiber fractions of soaked and raw	
	rice, wheat, clover, faba bean hays, and clover and barley	
	seeds	65
18	Effect of clover seeding density, grown in hays media	
	using Saline water (NaCl 2000ppm) on the proximate	
	analysis character of 4 days old Egyptian clover etiolated	
	sprout fodder	67

No.		Pag
19	Effect of barley seeding density, grown in hays media using Saline water (NaCl 2000ppm) on the proximate analysis character of 4 days old barley etiolated sprout	~ 0
20	fodder Effect of clover seeding density, grown in hays media using Saline water (NaCl 2000ppm) on the fiber fractions of 4 days old Egyptian clover etiolated sprout dry media	68
21	(fodder)	70
22	(fodder)	71
23	Effect of seeding density % of Egyptian clover and barley etiolated sprouts (4 days old) grown in mixture with hay media.	76
24	Estimated contents cost of Agricultural cycle of Tap water clover etiolated sprout fodder production	78
25	Estimated contents cost of Agricultural cycle of saline water (NaCl 2000ppm) clover etiolated sprout fodder production	79
26	Estimated contents cost of Agricultural cycle of Tap water barley etiolated sprout fodder production	80
27	Estimated contents cost of Agricultural cycle of saline water (NaCl 2000ppm) barley etiolated sprout fodder production.	81

No.		Page
28	Estimated cost (L.E/Ton) of Dry Matter (DM), crude Protein (CP) and Total Digestible Nutrients (TDN) of Egyptian clover-etiolated sprouts grown in mixture with rice, wheat, faba bean and Egyptian clover hay at different	
	seeding density as compared with commercial feedstuff	83
29	Estimated cost (L.E/Ton) of Dry Matter (DM), crude Protein (CP) and Total Digestible Nutrients (TDN) of barely etiolated sprouts grown in mixture with rice, wheat, faba bean and Egyptian clover hay at different seeding	
	density as compared with commercial feedstuff	84
30	Increment and decrement relative cost (L.E/Ton) percentage of Dry Matter (DM), crude Protein (CP) and Total Digestible Nutrients (TDN)of Egyptian clover etiolated sprouts grown in mixture with rice ,wheat ,faba bean and Egyptian clover hay at different seeding density as compared with commercial feedstuff (Corn	
	silage)	87
31	Increment and decrement relative cost (L.E/Ton) percentage of Dry Matter (DM), crude Protein (CP) and Total Digestible Nutrients (TDN) of barely etiolated sprouts grown on rice, wheat, faba bean and Egyptian clover hays at different seeding density as compared with	
	commercial feedstuff (Corn Silage)	88
32	Increment and decrement relative cost (L.E/Ton) percentage of Dry Matter (DM), crude Protein (CP) and Total Digestible Nutrients (TDN) of Egyptian clover etiolated sprouts grown on rice, wheat, faba bean and Egyptian clover hays at different seeding density as compared with commercial feedstuff (Alfalfa)	89
	compared with commercial recustant (Milana)	U)

No.		Page
33	Increment and decrement relative cost (L.E/Ton)	
	percentage of Dry Matter (DM), crude Protein (CP) and	
	Total Digestible Nutrients (TDN) of barely etiolated	
	sprouts grown on rice, wheat, faba bean and Egyptian	
	clover hays at different seeding density as compared with	
	commercial feedstuff (Alfalfa)	90
34	Increment and decrement relative cost (L.E/Ton)	
	percentage of Dry Matter (DM), crude Protein (CP) and	
	Total Digestible Nutrients (TDN) of Egyptian clover	
	etiolated sprouts grown on rice, wheat, faba bean and	
	Egyptian clover hays at different seeding density as	
	compared with commercial feedstuff (Hydroponic Barely)	91
35	Increment and decrement relative cost (L.E/Ton)	
	percentage of Dry Matter (DM), crude Protein (CP) and	
	Total Digestible Nutrients (TDN) of barely etiolated	
	sprouts grown on rice, wheat, faba bean and Egyptian	
	clover hays at different seeding density as compared with	
	commercial feedstuff (Hydroponic Barely)	92
36	Increment and decrement relative cost (L.E/Ton)	
	percentage of Dry Matter (DM), crude Protein (CP) and	
	Total Digestible Nutrients (TDN) of barely etiolated	
	sprouts grown in mixture with rice, wheat, faba bean and	
	Egyptian clover hay at different seeding density as	
	compared with commercial feedstuff (Green barley on rice	
	hays (100%))	93
37	Increment and decrement relative cost (L.E/Ton)	
	percentage of Dry Matter (DM), crude Protein (CP) and	
	Total Digestible Nutrients (TDN) of barely etiolated	
	sprouts grown in mixture with rice, wheat, faba bean and	
	Egyptian clover hay at different seeding density as	
	compared with commercial feedstuff (Green barley on rice	
	hays (100%)	94

VIII

LIST OF FIGURES

No.		Page
1	Hays used in feed production	35
2	Seeds used in feed production	36
3	Soak seeds and hay	36
4	Mix the seeds inside the hays	37
5	Place the hays and seeds in the cloth bag and all in burlap	
	bag	37
6	Etiolated sprout in hays	38