

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

BOUNDARY ELEMENT LATERAL ANALYSIS OF TALL BUILDINGS INCLUDING SOIL-STRUCTURE INTERACTION EFFECTS

A Thesis submitted in partial fulfillment for the requirements of the degree of Master of Science in Civil Engineering (Structural Engineering)

By Mostafa Rabea Attia Ibrahim

B.Sc. in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2011

Supervised by

Prof. Dr. Omar Ali Mosa El-Nwawy

Professor of Concrete Structures
Faculty of Engineering, Ain Shams University

Prof. Dr. Abd El-Salam Ahmed Mokhtar

Professor of Structural Analysis Faculty of Engineering, Ain Shams University

Prof. Dr. Youssef Fawzy Rashed

Professor of Structural Analysis and Mechanics Faculty of Engineering, Cairo University

Cairo 2018

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Structural Engineering

BOUNDARY ELEMENT LATERAL ANALYSIS OF TALL BUILDINGS INCLUDING SOIL-STRUCTURE INTERACTION EFFECTS

A Thesis submitted in partial fulfillment for the requirements of the degree of Master of Science in Civil Engineering (Structural Engineering)

By Mostafa Rabea Attia Ibrahim

B.Sc. in Civil Engineering (Structural Engineering) Faculty of Engineering, Ain Shams University, June 2011

Examiners Committee

Name & Affiliation	Signature
Prof. Dr. Othman Elsayed Abd Elaal Shaalan	
Professor of Concrete Structures, Zagazig University	
Prof. Dr. Mohammed Nour Eldin Saad Fayed	
Professor of Structural Analysis, Ain Shams University	
Prof. Dr. Omar Ali Mosa El-Nwawy	
Professor of Concrete Structures, Ain Shams University	
Prof. Dr. Abd El-Salam Ahmed Mokhtar	
Professor of Structural Analysis Ain Shams University	

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Mostafa Rabea Attia Ibrahim

Signature

01 December 2018

Researcher Data

Name : Mostafa Rabea Attia Ibrahim

Date of birth : 09/12/1988

Place of birth : Cairo

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree: Ain Shams University

Date of issued degree : 2011

Current job: Demonstrator at Faculty of Engineering, Ain Shams University

Thesis Summary

In this thesis, a new technique for the analysis of buildings including soil-structure interaction (SSI) is suggested. The new analysis is based on sub-structuring approach

where the system is partitioned into two main parts which are the superstructure part

and the raft-soil part. A static condensation technique is implemented at the wall-raft

interface. Deformations of supports at wall-raft interface are obtained. Current practical

analysis of SSI is implementing the static condensation at the raft-soil interface which is

time consuming and tedious job. The new analysis has shown less time and effort in the

modeling and analysis. This technique of analysis is presented here only for linear

analysis and shear wall buildings rested on piled raft. However, this technique can be

extended to include the other methods of SSI such as EHS and nonlinear analysis such

as no tension SSI, soil nonlinearity SSI and analysis of frame buildings.

Keywords:

BEM; Soil-structure interaction; condensation; Lateral Analysis; tall buildings;

i

Acknowledgment

First of all due thanks go to **God** the most merciful and most graceful. Who without his guidance and inspiration nothing could have been accomplished.

I also wish to express my deep indebtedness to **Prof. Dr. Youssef Fawzy Rashed**, Professor of Structural Analysis and Mechanics, Structural Engineering Department, Faculty of Engineering, Cairo University, for his generous guidance and encouraging, sincere help, consistent support by all means and asking, valuable suggestions, and precise advice through all stages of this research work, I express my true thanks and gratitude for opening my mind to the true values of sincere and creativity. I have learned many lessons in working under his guidance and leadership that I will remember for an extremely long time. Also I want to introduce my thanks to **Prof. Dr. Abd El-Salam Ahmed Mokhtar** for supporting me in technical and personal wise and I want to thank him for his advice through stages of this research work. I want to thank **Prof. Dr. Omar Ali El Nwawy** for supporting me.

My thanks also go to my colleagues, especially **Dr.Taha Abou Elnaga**, **Eng. Ahmed Fady**, **Eng. Anas Abu Rawash**, **Abdelrahman Elmeliegy** and all friends who supported me all the way to achieve this work.

Special thanks to all my family, especially for Sara Adel and Mazen for their support, guidance and dedication

01 December 2018

Table of Contents

Thesis Su	ammary	i
Acknowl	edgment	ii
Table of	Contents	iii
List of F	igures	vii
Chapter	1: Introduction	1
1.1 Ger	neral	1
1.2 The	esis objectives	1
1.3 The	esis outline	4
Chapter	2: Literature Review	5
2.1 Sou	rces of Soil structure interaction	5
2.1.1	Kinematic interaction	5
2.1.2	Inertial interaction	6
2.2 Met	hods of soil structure interaction modeling	8
2.2.1	The direct approach [15-16]	8
2.2.2	The Substructure approach [17]	9
2.3 Metl	nods of soil representation	12
2.3.1	The Winkler model	12
2.3.2	The multi-Parameter model [19-20]	13
2.3.3	The elastic half space (EHS) model	13
2.4 Avai	lable solutions in practice	14
2.4.1	The uncoupled manually iterative method	15
2.4.2	The conventional method in practice	17
2.5 Cone	clusions	20

Chapter	3: Used Numerical Methods and Softwares	21
3.1 Intro	oduction	21
3.2 The	finite element method (FEM) [32]	21
3.2.1	Advantage of the FEM	21
3.2.2	Disadvantage of the FEM	22
3.3 The	SAP software [32]	22
3.3.1	SAP modeling and simulation capabilities	23
3.3.2	SAP analysis capabilities	23
3.4 The	boundary element method (BEM) [34]	24
3.5 The	Variational boundary element method (VBEM)	24
3.6 Raft	terminology used in BEM/PLPAK	26
3.6.1	Raft foundation	27
3.6.2	Boundary elements	27
3.6.3	Nodes	27
3.6.4	Extreme points	27
3.6.5	Colum load modeling	27
3.6.	5.1 Column load modeling without rotational stiffness	28
3.6.	5.2 Column load modeling with rotational stiffness	28
3.6.6	Wall load modeling in PLPAK	28
3.7 S	oil terminology used in BEM/PLPAK	29
3.7.1	Subgrade reaction (K)	29
3.7.2	Elastic modulus(E)	29
3.7.3	Poisson's ratio (v)	30
3.7.4	Soil layers	30
3.7.5	Soil cells/divisions	30
3.8 Th	e PLPAK software package	32

3.8.1 The PlGen	34
3.8.2 PLView	34
3.8.3 PL.exe	34
3.8.4 PLPost	35
3.8.5 PLCoreman	35
3.9 Soil modeling in PLPAK	36
3.9.1 Winkler model	36
3.9.2 EHS modeling	37
3.10 Conclusions	38
Chapter 4: The Proposed New Technique	39
4.1 Introduction	39
4.2 Analysis of Superstructure with the VBEM program	40
4.2.1 Shell Element Program	40
4.2.1.1 Input Files	40
4.2.1.2 Output Files	43
4.3 Illustrative Example	46
4.4 Methodology	49
4.5 Conclusions	52
Chapter 5: Numerical examples	53
5.1 Introduction	53
5.2 Example (1)	53
5.3 Example (2)	61

Chapter 6: Summary, Conclusions and Recommendations for	
Future Work	69
6.1 Summary	69
6.2 Conclusions	69
6.3 Recommendations for future work	70
References	71

List of Figures

Figure 1.1 The proposed new method of static condensation	3
Figure 2.1(a) The effect of soil flexibility on the lateral deformation	7
Figure 2.1(b) The effect of neglecting soil flexibility	7
Figure 2.2 The direct approach of soil-structure interaction	9
Figure 2.3 The substructure method of soil-structure interaction	11
Figure 2.4 Soil representation using Winkler springs	12
Figure 2.5 The Uncoupled iterative technique used in design firms	16
Figure 2.6 The conventional method used in practical design firms (a),(b)18&19
Figure 3.1 Soil and boundary elements discretization for a typical raft of	on Winkler
foundation	29
Figure 3.2 Soil and boundary elements discretization for a typical raft of	on EHS31
Figure 3.3 Flow chart show the PLPAK components	33
Figure 3.4 The Winkler cell discretization in the PLView	36
Figure 3.5 Practical raft on Winkler modeled using PLGen	37
Figure 3.6 EHSPAK add-on start menu	38
Figure 4.1 Flow chart illustrating the sequence of solution	45
Figure 4.2 The structural drawings using AutoCAD	46
Figure 4.3 The SAP 3D model.	47
Figure 4.4 Extracting data needed from SAP	48
Figure 4.5 The raft model in PLGEN.	49
Figure 4.6 The raft model in PLPost	49
Figure 5.1 Example 1 plan	54
Figure 5.2 The SAP2000 3D model of superstructure	55
Figure 5.3 The raft model in PLGEN.	56
Figure 5.4 The raft model in PLPost	56

Figure 5.5 The SAP2000 3D model of the whole structure including soil – Direct
Method
Figure 5.6 The SAP2000 3D model of the whole structure including soil – Direct
Method
Figure 5.7 Lateral Deflection in X-direction for example 1
Figure 5.8 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1 59
Figure 5.9 Inter Story Drift in X-direction for example 1
Figure 5.10 Drift Ratio SSI/NSSI in X-direction for example 1
Figure 5.11 Example 2 plan
Figure 5.12 The SAP2000 3D model of superstructure
Figure 5.13 The raft model in PLGEN
Figure 5.14 The raft model in PLPost
Figure 5.15 The SAP2000 3D model of the whole structure including soil – Direct
Method
Figure 5.16 The SAP2000 3D model of the whole structure including soil – Direct
Method
Figure 5.17 Lateral Deflection in X-direction for example 2
Figure 5.18 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2 67
Figure 5.19 Inter Story Drift in X-direction for example 2
Figure 5.20 Drift Ratio SSI/NSSI in X-direction for example 2

Chapter 1 Introduction

1.1 General

According to many reports [1], construction industry undergoining a very rapid development particularly in tall buildings because of orientation to urbanization and industrial development.

Considering tall building from 5 to 10 stories with raft foundations, it is common in structural engineering mainly in the analysis of buildings at design companies not taking into account the flexibility of the substructure (underneath soil and foundations) in the analysis of the superstructure. They always carry out design as two independent parts.

Generally, buildings are assumed to be hinged or fixed at the ground level. As a consequence, the evaluated responses because of different types of load cases especially the lateral loads (earthquakes and wind loads) do not exactly present the accurate behavior of the structure. Soil and raft stiffness will add more flexibility to the structure; so that the overall stiffness will be decreased and a more realistic and optimized designs could be optained. On the other hand, the lateral deflection and the inter-story drift will increase by increasing the soil flexibility. Although this is more conservative for the structures, the safety of the structure due to lateral deflection should be re-evaluated so, it is very important to consider soil-structure interaction in the analysis.

1.2 Thesis objectives

The main objective of this work is to develop a tool to analyze multistory shear wall buildings rested on piled raft foundation under static lateral loads considering soil-structure interaction taking into consideration the limited number of stories due to shortage of computer facilities. The new idea is based on the availability of the SAP program [32] as an input data interface to a program based on variational boundary

element and that for superstructure analysis presented in chapter 3 in section 3.3. Also, there is a program called PLPAK [38] see chapter 3 section 3.4 through which soil can be modeled as piled raft. Unlike the uncoupled iterative technique presented in section 2.4.1, this technique is based on a static condensation at the raft-walls interface as shown in figure 1.1. This will produce much less degrees of freedom and hence much less effort and computation time. The new technique is planned to be automated; also a graphical user interface for the work is going to be developed to easily use for engineers in the practice.

The thesis objectives can be summarized as below.

- To develop a new algorithm to couple the structure with the soil in the analysis of tall buildings rested on piled raft foundations to consider the effect of static soil-structure interaction.
- To implement this tool to couple a program based on variational boundary element which used for analysis of superstructure with a boundary element based program named PLPAK which is used for the analysis of slabs and foundation on elastic half space.

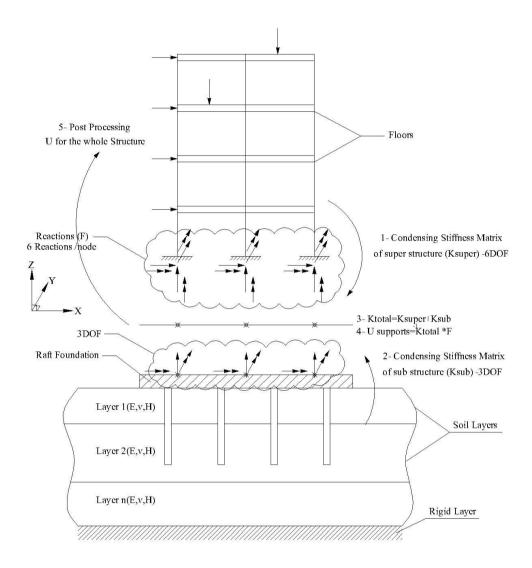


Figure 1.1 The proposed new method of static condensation.