Early Detection of Premature Atherosclerosis in β -Thalassemia Patients by Measuring Carotid Intima-Media Thickness

Thesis

Submitted for Partial Fulfillment of M. Sc. Degree in Pediatrics

By

Doaa Mahmoud Abdel Mottaleb Alnagar

Diploma Degree in Pediatrics, Faculty of Medicine Ain Shams University (2016)

Supervised by

Prof. Dr. Wafaa Ezzat Ibrahim

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Omneya Ibrahim Youssef

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Heba Gomaa Abd El Raheem

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Wafaa Ezzat**Ibrahim, Professor of Pediatrics, Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Omneya**Ibrahim Youssef, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Weba Gomaa**Abd El Raheem, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Doaa Mahmoud

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Abstract	
Introduction	
Aim of the Study	
Review of Literature	1
Thalassemia	5
Atherosclerosis In Thalassemia	
Carotid Intima Media Thickness	
Subjects and Methods	
Results	
Discussion	
Summary	
Conclusions	
Recommendations	161
References	162
Arabic Summary	

List of Tables

Table. No.	Title	Page No.
Table (1):	Reference values of complete blood pictor	ure98
Table (2):	Reference values of serum lipids	103
Table (3):	Demographic and anthropometric mea of all studied groups	
Table (4):	Demographic and anthropometric mea of all studied groups	
Table (5):	Laboratory data of all studied groups	114
Table (6):	Comparison between all studied grouregard demographic and clinical data	_
Table (7):	Comparison between diseased group regard clinical data	
Table (8):	Comparison between diseased group regards chelation therapy and Tanner S	
Table (9):	Comparison between all studied ground regards hematological and bioches	mical
	parameters	
Table (10):	Comparison between diseased group regards hemoglobin electrophoresis	
Table (11):	Comparison between diseased group regard Viral markers	
Table (12):	Echocardiographic findings of the dis	
/D-1-1- (19)	group	
	CIMT measurement in all studied group	=
Table (14):	Comparison between all studied grouregards CIMT	
Table (15):	Correlations between CIMT and paregarding demographic and clinical data	
Table (16):	Correlation between CIMT and labor	•

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The structure of hemoglobin (Hb)	19
Figure (2):	Schematic representation of the globin gene clusters	
Figure (3):	Beta globin gene mutations	27
Figure (4):	Hb H inclusions in "golf ball cells" f Hb H disease	
Figure (5):	Target cells, tear drop cells and min hypochromic red blood cells	•
Figure (6):	Morphologic appearance of the perblood film in a case of severe β -thal major	assemia
Figure (7):	Morphology of the peripheral blood a case of heterozygous β - thalassem	
Figure (8):	Proposed mechanism of iron dysreg in beta-thalassemia disease	•
Figure (9):	The arterial wall of the common artery of an asymptomatic incomposition throughout life and the various starterial wall thickening	dividual tages of
Figure (10):	A typical B-mode ultrasound images the carotid artery	-
Figure (11):	Graphical representation of circumferential assessment of the sites	e artery
Figure (12):	Measuring the CIMT from multiple that were obtained from standardized angles of interrogation	various

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (13):	A typical B-mode ultrasound imag	
Figure (14):	Mean age of the studied groups	112
Figure (15):	Mean Weight and BMI of the s	
Figure (16):	Comparison between cases and c regarding sex.	
Figure (17):	Comparison between all studied regarding Weight Z Score	· -
Figure (18):	Comparison between β -thalassemia and intermedia regarding interdisease (p=0.007)	val of
Figure (19):	Comparison between B thalassemia and Intermedia as regard Liver spresent status(p=0.042)	pan at
Figure (20):	Comparison between β-thalassemia and Intermedia group reg splenectomy (p=0.040).	garding
Figure (21):	Comparison between β-thalassemia and Intermedia as regards transindex (p=0.035)	sfusion
Figure (22):	Comparison between the two digroups regarding compliance to ch (p=0.009)	elators
Figure (23):	Mean HGB and HCT in the all s groups.	
Figure (24):	Comparison between all studied regarding TLC.	· -

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (25):	Comparison between all studied regarding Ferritin level.		124
Figure (26):	Comparison between all studied regarding mean of TG, LDL and cholesterol.	d HDL	124
Figure (27):	Comparison between β thalassemia and β thalassemia intermedia regarding Hg A%(p=0.002)	groups	125
Figure (28):	Comparison between β -thalassemia and β -thalassemia intermedia regarding Hg F%(p=0.004).	groups	126
Figure (29):	Comparison between all studied regarding mean CIMT	-	129
Figure (30):	Positive correlation between CIM diastolic BP in β-thalassemia patients (p=0.030)(r=0.462)	major	131
Figure (31):	Positive correlation between CIM spleen size at present statuthalassemia major patients (p. (r=0.706)	sin β =0.034)	132
Figure (32):	Negative correlation between CIM ejection fraction in β thalassemia patients (p=0.006(r=-0.900)	major	133
Figure (33):	Positive correlation between CIM ferritin level in all patients group (p (r=0.720)	=0.000)	135
Figure (34):	Positive correlation between CIMT level in all patient groups (p (r=0.761)	=0.000)	136

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (35):	Positive correlation between CIM Cholesterol level in all patient (p=0.000)(r=0.700).	groups
Figure (36):	Positive correlation between CIM ferritin level in β -thalassemia majo (p=0.006)(r=0.565)	r group
Figure (37):	Positive correlation between CIM cholesterol level in β - thalassemia group (p=0.022)(r=0.487)	a major
Figure (38):	Positive correlation between CIMT level in β - thalassemia major (p=0.004)(r=0.582)	group
Figure (39):	Positive correlation between CIM LDL level in β - thalassemia major $(p=0.047)(r=0.429)$	r group
Figure (40):	Positive correlation between CIM ferritin level in β - thalassemia integroup (p=0.000)(r=0.964)	ermedia
Figure (41):	Positive correlation between CIMT level in β - thalassemia intermedia (p=0.002)(r=0.902)	a group
Figure (42):	Positive correlation between CIN cholesterol level in β- thal intermedia group (p=0.000)(r=0.964	assemia

List of Abbreviations

Full term Abb. μg...... Microgram μl...... Microliter ACA.....Anticardiolipin Antibody aPLAnti-Phospholipid Antibodies BMI..... Body Mass Index BPBlood Pressure CACSCoronary Artery Calcification Score CADCoronary Artery Diseases CBCarotid Bulb or Bifurcation CBC.....Complete Blood Picture CCACommon Carotid Artery CIMTCarotid Intima-Media Thickness CT CTComputed Tomography CVCardiovascular CVDCardiovascular Disease DFODesferoxamine DFP.....Defriprone DFX.....Defrasirox DVTDeep Venous Thrombosis ECEndothelial Cells ECA.....External Carotid Artery EPOErythropoietin ERFEErythroferrone GDF15Growth Differentiation Factor 15 GVHDGraft Versus Host Disease HBHemoglobin HCTHematocrit HCVHepatitis C Virus

List of Abbreviations (Cont...)

Abb.	Full term
HDL-C	High- Density Lipoprotein Cholesterol
Hg A	
Hg A2	
Hg F	_
	Heridetery Persistence of Fetal Hemoglobin
HR	-
	Highly significant
	Internal Carotid Artery
	Intercellular Adhesion Molecule-1
IDDM	Insulin-Dependent Diabetes Mellitus
	Ineffective Erythropoiesis
IL- 1, 2, and 6	Interleukins 1, 2, and 6 ()
IMT	Intima–Media Thickness
IVUS	Intravascular Ultrasonography
LA	Lupus Anticoagulant
LDL	Low-Density Lipoprotein
LDL-C	Low Density Lipoprotein Cholesterol
LIC	Liver Iron Concentration
LPI	Labile Plasma Iron
MCV	Mean Corpuscular Volume
MDA	Malondialdehyde
mg/dl	. Mille gram per deciliters
mg/g	. Mille gram per gram
mg/kg/day	. Mille gram per kilogram per day
ml/min	. Mille liter per minute
mm	. Milli meter per Liter
MRI	Magnetic Resonance Imaging
ng/ml	. Nanogram per mille litter

List of Abbreviations (Cont...)

Full term Abb. nm......Nanometer NO.....Nitric Oxide NSNon Significant NTBINon-Transferrin-Bound Iron NTDTNon-Transfusion Dependent Thalassemia °C Centigrade OxLDLOxidized LDL PLT Platelet PONParaoxonase PRBCs.....Packed Red Blood Cells RBCRed Blood Cell ROSReactive Oxygen Species S.....Significant SCTStem Cell Transplantation SDStandard Deviation SDS.....Standard Deviation Score TCTotal-Cholesterol TFTissue Factor TGF-beta1Transforming Growth Factor Beta1 TI.....Thalassemia Intermedia TLCTotal Leucocytic Count TM.....Thalassemia Major TMBTetramethylbenzidine TNF-α..... Tumor Necrosis Factor α TWSG1Twisted-Gastrulation 1 UCBUmbilical Cord Blood VCAM-1.....Vascular Cell Adhesion Molecule-1 VWF.....von Willebrand factor

List of Abbreviations (Cont...)

Abb.	Full term
α	Alpha
β-Thal	•
β-tI	βeta-Thalassemia Intermedia
β-tM	βeta-Thalassemia Major
β-ΤΜ	β-thalassemia major
γ	Gamma

ABSTRACT

Background: Beta-thalassemia patients still suffer from many complications. Transfused patients may develop complications related to iron overload including growth retardation and failure or delay of sexual maturation, cardiac involvement (dilated cardiomyopathy or rarely arrhythmia), liver (fibrosis and cirrhosis), endocrine glands (diabetes mellitus, hypogonadism, insufficiency of parathyroid, thyroid, pituitary and less commonly, adrenal glands).

Purpose: The present study was undertaken to evaluate the role of Carotid artery intima media thickness (CIMT) measurement as an early detector of premature atherosclerosis in beta-thalassemia children and early adolescents and its relation to biochemical risk factors as iron overload and lipid profile.

Patients and Method: Twenty-two β -thalassemia major (TM), 8 β -thalassemia intermedia (TI) with confirmed diagnosis of beta-thalassemia (major and intermedia) proved by clinical and laboratory investigations, frequent blood transfusion, chelation therapy with their age ranging from 10 to18 years old and 30 age-and sex matched healthy controls were included. Lipid profile (by colorimetric assay), serum ferritin, and CIMT measurements using high-resolution B-mode ultrasonography were estimated.

Results: CIMT of thalassemic patients (major and intermedia) was highly significantly increased compared to controls with no significant difference between β -thalassemia major and β thalassemia intermedia groups could be detected. CIMT was positively correlated with serum ferritin, TG, Total cholesterol level in both diseased groups and LDL level in B-TM group only. This provides a good evidence of the presence of premature atherosclerosis in vascular-free TM and TI patients and its relation to increased body iron and dyslipidemia.

Conclusion: Carotid artery intima media thickness represented a simple, accurate and non-invasive method for early detection of premature atherosclerosis which started early in β - thalassemia patients This study identified a relationship between body iron status, dyslipidemia and increased carotid IMT.

Keywords: Beta-thalassemia, Carotid artery intima media thickness, premature atherosclerosis.

Introduction

Deta-thalassemia syndromes are a group of hereditary disorders characterized by a genetic deficiency in the synthesis of beta-globin chains. In the homozygous state, beta thalassemia (ie, thalassemia major) causes severe, transfusiondependent anemia. In the heterozygous state, the beta thalassemia trait (ie, thalassemia minor) causes mild to moderate microcytic anemia (Rachmilewitz et al., 2011).

Individuals with thalassemia major usually come to medical attention within the first two years of life and require regular RBC transfusions to survive. Thalassemia intermedia includes patients who present later and don't require regular transfusion (Galanello et al., 2010).

However, beta-thalassemia patients still suffer from many complications. Transfused patients may develop complications related to iron overload including growth retardation and failure or delay of sexual maturation, cardiac involvement (dilated cardiomyopathy or rarely arrhythmia), liver (fibrosis and cirrhosis), endocrine glands (diabetes mellitus, hypogonadism, insufficiency of parathyroid, thyroid, pituitary and less commonly, adrenal glands) (Borgna-Pignatti et al., 2004).

Cardiac disease caused by myocardial siderosis is the most important life- limiting complication of iron overload and it is the cause of death in 71% of patients of beta-thalassemia (Borgna-Pignatti et al., 2004).