

Ain Shams University
Faculty of women for
Arts, Science and Education
Biochemistry and Nutrition Department

# **Using Some Fruits Rich in Polyphenolic Compounds for Managing Dry Eye in Experimental Animal Model**

Thesis

Submitted to Faculty of Women, Ain Shams University in Partial Fulfillment for Master of Science Degree (M.Sc) in Biochemistry and Nutrition

### By

### **Ethar Ahmed Mohamed Ebrahim El-hoseny**

B.Sc. in Biochemistry and Nutrition Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

### Under Supervisors Prof. Dr. Fatma Hassan Abd El-Razek

Professor of Nutrition
Biochemistry and Nutrition Department
Faculty of Women for Arts, Science and Education
Ain Shams University

### Prof. Dr. Anhar Mohamed Gomaa

Professor of Biochemistry Biochemistry Department Research Institute of Ophthalmology

### Dr. Bakinam Ali Mohamed

Lecture of Biochemistry and Nutrition Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

2018

# AGMOVI ALLINATI

First of all and foremost, thanks to Allah almighty for giving me the strength to continue this work.

I would like to express my sincere gratitude to **Prof. Dr. Fatma**Hassan Abd El-Razek, Professor of Nutrition, Biochemistry and
Nutrition Department, Faculty of women for Arts, Science and Education,
Ain Shams University, for her support, helps guidance, planning the frame
of the work and her stimulating view.

Many thanks are extended to **Prof. Dr. Anhar Mohamed Gomaa Shehab**, Professor of Biochemistry, Biochemistry Department, and Research Institute of Ophthalmology, for her meticulous supervision and continuous encouragement, my words stand to express how much I'm obliged to her for helping me to complete this study, she never denied me her valuable time and effort.

I would like to thank **Dr. Bakinam Ali Mohamed** lecture of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of women Faculty of women for Arts, Science and Education, Ain Shams University, for her effort, guidance and valuable advice.

I wish to express my deepest thanks to **Prof. Dr. Mohamed Saad Al-Balkini**, Professor of Ophthalmology, Ophthalmology Department, and Research Institute of Ophthalmology.

I would like to thank **Prof. Dr. Laila Kamal** Professor of Histopathology, Histopathology Department, and Research Institute of Ophthalmology.

With a great pleasure, I would like to express my sincere gratitude to my Mother, Father, Husband, Daughter, Sister and Brother for their continuous encouragement, support and love.





سوره طه -۱۱۶

# Decication

I would like to dedication this thesis to my family especially to my father and my mother for their constant, unconditional love and support throughout my entire life. There are not enough words I can say to describe just how important my mother and my father are to me, and what a powerful influence they continue to be...

Also this work is lovingly dedicated to my husband, daughter, sister and brother. I will never forget their effort towards me and also for their encouragement, support and love.

### **Abstract**

**Objective:** The present study was performed to investigate the protective effect of blackberry and pomegranate as polyphenolic compounds for managing dry eye in experimental animal model.

Materials and Methods: The blackberry and pomegranate were dried in air oven. Forty eight male rabbits (1000-1300g) were divided into six groups: G1: normal control, G2: dry eye, G3: normal fed on blackberry, G4: normal fed on pomegranate, G5: dry eye feed on blackberry and G6: dry eye feed on pomegranate. Dry eye induced by atropine sulphate 1% drops (2 drops in each eve twice daily) for 2 months, blackberry or pomegranate was taken as 20% of the main diet. Polyphenolic compounds of blackberry and pomegranate were analyzed by using high performance liquid chromatography (HPLC). Tear production measured using Schirmer test and tear break up time (TBUT). Tears were collected from all groups using 5-µL silanated microcapillary pipettes. At the end of experiments, rabbits were fasted overnight and blood was withdrawn. The levels of reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) and interlukin-1beta (IL-1\beta) were estimated in the tears and blood. In addition catalase (CAT) and superoxide dismutase (SOD) activity were determined in the blood. Cornea excised and examined by light microscope. Evaluation of tears protein fractions by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was also identified.

**Results:** Significant improvements were noticed in Schirmer I score and TBUT of dry eye rabbits fed on 20% dried blackberry or 20% dried pomegranate compared to dry eye group. There was a significant (p < 0.05) decrease in serum and tears IL-1 $\beta$ , NO

and a statistically increase in the blood GSH, plasma CAT in dry eye rabbits fed on 20% dried blackberry or 20% dried pomegranate compared to dry eye rabbit group.

**In conclusion:** Supplementation with dried blackberry or pomegranate is effective against the dry eye syndrome by decreasing ocular inflammation and increasing antioxidant contents in tears of experimental animal model.

**Key words:** dry eye, polyphenolic compounds, atropine sulphate, blackberry, pomegranate oxidative stress, antioxidant

# List of Contents

| Subject               | Page No. |
|-----------------------|----------|
|                       |          |
| List of abbreviations | Ι        |
| List of tables        | IV       |
| List of figures       | VI       |
| Introduction          | 1        |
| Aim of the Work       | 4        |
| Review of Literature  | 5        |
| Materials and methods | 46       |
| Results               | 73       |
| Discussion            | 123      |
| Summery               | 148      |
| Conclusion            | 153      |
| recommendation        | 154      |
| References            | 155      |
| Arabic summary        |          |

# List of Abbreviations

| AAP    | 4-aminophenazone                               |
|--------|------------------------------------------------|
| ALP    | alkaline phosphatase                           |
| ARVO   | The Association for Research in Vision and     |
|        | Ophthalmology                                  |
| CAT    | Catalase                                       |
| DE     | Dry eye                                        |
| DED    | Dry eye disease                                |
| DHBS   | 3,5- Dichloro -2- hydroxybenzene sulfonic acid |
| DTNB   | 5, 5' dithio-bis-2-nitrobenzoic acid           |
| ELISA  | Enzyme linked immune sorbent assay             |
| EP     | Epithelial cells                               |
| GSH    | Reduced Glutathione                            |
| GSSG   | Oxidized Glutathione                           |
| GSHPx  | Glutathione peroxidase                         |
| HCEP   | Human corneal epithelium                       |
| HNE    | 4-hydroxynonenal                               |
| HPLC   | High performance liquid chromatography         |
| HRP    | Horeseradish peroxidase                        |
| IL-1 α | Interleukin 1α                                 |
| IL-1β  | Interleukin 1β                                 |
| iNOS   | Isoform nitric oxide synthase                  |

| KCS                  | Kerato-conjunctiviti ssicca                 |
|----------------------|---------------------------------------------|
| LASIK                | Laser-assisted insitu kertomileusis         |
| LDL                  | Low density lipoprotein                     |
| LOO•                 | Peroxyl radical                             |
| MAD                  | Malondialdehyde                             |
| MAPK                 | Mitogen-activted protein kinase             |
| MGD                  | Meibomian gland dysfunction                 |
| MMPs                 | Metalloproteinases                          |
| mtROS                | Mitochondrial reactive oxygen species       |
| N3•                  | azide                                       |
| NADP                 | Nicotinamide adenine dinucleotide           |
| Na <sub>2</sub> EDTA | Disodium ethylene diamine tetra acetic acid |
| NFkB                 | Nucler factor-kB                            |
| NO                   | Nitric oxide                                |
| •OH                  | hydroxyl                                    |
| ONOO-                | Peroxynitrite                               |
| OS                   | Oxidative stress                            |
| PHS                  | Physicians 'Health Study                    |
| ROO•                 | peroxyl                                     |
| ROS                  | Reactive oxygen species                     |
| SDS-PAGE             | Sodium dodecyl sulfate polyacrylamide gel   |
|                      | electrophoresis                             |
| sIgA                 | Secretory immunoglobin A                    |

| SOD   | Superoxide dismutase             |
|-------|----------------------------------|
| SS    | Sjögren's syndrome               |
| TBA   | Thiobarbituric acid              |
| TBUT  | Tear break up time               |
| TMP   | 3, 3',5 ,5'-tetramethylbenzidine |
| TNF-α | Tumor necrosis factor-α          |
| UV    | Ultraviolet                      |
| Vit   | Vitamin                          |
| WHS   | Women's Health Study             |

# List of tables

| No. | Title                                                                                                                             | Page |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Commercial diet constituent                                                                                                       | 47   |
| 2   | Quantitative identification of polyphenolic compounds in blackberry by high performance liquid chromatography (HPLC)              | 75   |
| 3   | Quantitative identification of polyphenolic compounds in pomegranate by high performance liquid chromatography (HPLC)             | 77   |
| 4   | Mean $\pm S.D$ and percentage change of Schirmer test in normal control and dry eye with and without 20% dried blackberry groups  | 79   |
| 5   | Mean $\pm S.D$ and percentage change of Schirmer test in normal control and dry eye with and without 20% dried pomegranate groups | 80   |
| 6   | Mean ±S.D and percentage change for TBUT in normal control and dry eye with or without fed on 20% dried blackberry groups         | 84   |
| 7   | Mean ±S.D and percentage change for TBUT in normal control and dry eye with or without fed on 20% dried pomegranate groups.       | 85   |

| No. | Title                                                                                                                                                                                                                                                                                                                                | Page |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8   | Mean $\pm S.D$ and percentage change of blood reduced glutathione (GSH), blood superoxide dismutase activity (SOD), plasma catalase activity (CAT), serum malondialdehyde (MDA), serum nitric oxide (NO) and serum interleukin 1- $\beta$ (IL-1 $\beta$ ) levels for normal, dry eye and dry eye with and without blackberry groups. | 92   |
| 9   | Mean $\pm S.D$ and percentage change of blood reduced glutathione (GSH), blood superoxide dismutase activity (SOD), plasma catalase activity (CAT), serum malondialdehyde (MDA), serum nitric oxide (NO) and serum interleukin 1- $\beta$ (IL-1 $\beta$ ) for normal, dry eye and dry eye with and without pomegranate groups.       | 93   |
| 10  | Mean $\pm S.D$ and percentage change of tear reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) and interleukin 1- $\beta$ (IL-1 $\beta$ ) levels for normal and dry eye with and without blackberry groups.                                                                                                        | 103  |
| 11  | Mean $\pm S.D$ and percentage change of tear reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) and interleukin 1- $\beta$ (IL-1 $\beta$ ) levels for normal and dry eye with and without pomegranate groups.                                                                                                       | 104  |

# List of Figures

| No. of figure | Name                                                                                       | Page |
|---------------|--------------------------------------------------------------------------------------------|------|
| 1             | Anatomy of eye                                                                             | 6    |
| 2             | Major etiological causes of dry eye                                                        | 14   |
| 3             | Mechanisms of dry eye                                                                      | 16   |
| 4             | Tear composition and tear production                                                       | 20   |
| 5             | The relationship between mitochondrial reactive oxygen species (mtROS) and dry eye disease | 29   |
| 6             | Chemical structures of the different classes of polyphenols                                | 35   |
| 7             | Bioactive components in berries                                                            | 39   |
| 8             | Principal anthocyanins present in pomegranate                                              | 44   |
| 9             | Standard curve of nitrite                                                                  | 63   |
| 10            | Typical stander curve for il-1β rabbit ELISA                                               | 67   |
| 11            | Schirmer test in normal control and dry eye with and without 20% dried blackberry groups.  | 81   |
| 12            | Schirmer test in normal control and dry eye with and without 20% dried pomegranate groups. | 82   |

| No. of figure | Name                                                                              | Page |
|---------------|-----------------------------------------------------------------------------------|------|
| 13            | TBUT in normal control and dry eye with and without 20% dried blackberry groups.  | 86   |
| 14            | TBUT in normal control and dry eye with and without 20% dried pomegranate groups. | 87   |
| 15            | Blood reduced glutathione level in all experimental groups.                       | 94   |
| 16            | Blood superoxide dismutase activity in all experimental groups.                   | 95   |
| 17            | Plasma catalase activity in all experimental groups.                              | 96   |
| 18            | Serum malondialdehyde level in all experimental groups.                           | 97   |
| 19            | Serum nitric oxide level in all experimental groups.                              | 98   |
| 20            | Serum interleukin1β in all experimental groups                                    | 99   |
| 21            | Tears reduced glutathione level in all experimental groups                        | 105  |
| 22            | Tears malondialdehyde level in all experimental groups.                           | 106  |
| 23            | Tears nitric oxide level in all experimental groups.                              | 107  |
| 24            | Tears interleukin $1\beta$ level in all experimental groups.                      | 108  |

| No. of figure | Name                                                                                                             | Page |
|---------------|------------------------------------------------------------------------------------------------------------------|------|
| 25            | Light micrograph of normal control rabbit's cornea fed on basal diet                                             | 109  |
| 26            | Light micrograph of dry eye rabbit's cornea fed basal diet + atropine sulphate 1% drops                          | 110  |
| 27            | Light micrograph of rabbit's cornea fed on basal diet and 20 % dried blackberry                                  | 111  |
| 28            | Light micrograph of rabbit's cornea fed on basal diet and 20 % dried pomegranate                                 | 112  |
| 29a           | Light microscopic examination of dry eye rabbit's cornea fed on basal diet and 20% dried blackberry              | 113  |
| 29b           | Light microscopic examination of dry eye rabbit's cornea fed on basal diet and 20 % blackberry                   | 114  |
| 30            | Light microscopic examination of dry eye rabbit's cornea fed on normal diet and 20 % dried pomegranate           | 115  |
| 31            | SDS-polyacrylamide gel electrophoresis profile of<br>tears protein fractions of different experimental<br>groups | 118  |
| 32            | Densitograph of marker proteins                                                                                  | 119  |
| 33            | Densitograph of normal control group                                                                             | 120  |
| 34            | Densitograph of dry eye group                                                                                    | 120  |
| 35            | Densitograph normal group fed on 20% dried blackberry                                                            | 121  |