

Design and Production Engineering Department

# Fracture Evaluation of Steel Joints Made by Different Welding Processes

A Thesis submitted in partial fulfillment of the requirements of the degree of PhD in Mechanical Engineering (Design &Production Engineering Department)

#### By

#### Tarek Mohammed Refaat Hamed Gammeaa

B.Sc. Production Engineering, Faculty of Engineering, Alexandria University

M. Sc. in Mechanical Engineering, Faculty of Engineering, Ain Shams University

Supervised by

Prof. Taher G. Abo El-Yazied Prof. Aly A. El-Domiaty Prof. Adel B. El-Shabasy

Cairo-(2018)



# Design and Production Engineering Department

# Fracture Evaluation of Steel Joints Made by Different Welding Processes

A Thesis submitted in partial fulfillment of the requirements of the degree of PhD in Mechanical Engineering (Design &Production Engineering Department)

By

# Tarek Mohammed Refaat Hamed Gammeaa

#### **Examiners Committee**

| Name and Affiliation                         | Signature |  |
|----------------------------------------------|-----------|--|
| Prof. Dr. Ragaie Mohamed Rashad              |           |  |
| Mechanical Design and Production Department, |           |  |
| Faculty of Engineering, Cairo University     | ••••••    |  |
| Prof. Dr. Moustafa Abd El-Moniem Chaaban     |           |  |
| Design & Production Engineering Department,  |           |  |
| Faculty of Engineering, Ain Shams University |           |  |
| Prof. Dr. Taher G. Abo El-Yazied             |           |  |
| Design & Production Engineering Department,  |           |  |
| Faculty of Engineering, Ain Shams University |           |  |
| Prof. Dr. Adel B. El-Shabasy                 |           |  |
| Design & Production Engineering Department,  |           |  |
| Faculty of Engineering, Ain Shams University |           |  |
| Date:                                        | / /       |  |



# Design and Production Engineering Department

# Fracture Evaluation of Steel Joints Made by Different Welding Processes

A Thesis submitted in partial fulfillment of the requirements of the degree of PhD in Mechanical Engineering (Design &Production Engineering Department)

#### By

#### Tarek Mohammed Refaat Hamed Gammeaa

## **Supervision Committee**

| Name and Affiliation                           | Signature |  |
|------------------------------------------------|-----------|--|
| Prof. Dr. Taher G. Abo El-Yazied               |           |  |
| Design &Production Engineering Department,     |           |  |
| Faculty of Engineering, Ain Shams University   | •••••     |  |
| Prof. Aly A. El-Domiaty                        |           |  |
| Production Department, Faculty of Engineering, |           |  |
| Ismalia,Suez Canal University                  |           |  |
| Prof. Dr. Adel B. El-Shabasy                   |           |  |
| Design &Production Engineering Department,     |           |  |
| Faculty of Engineering, Ain Shams University   | •••••     |  |
| Date                                           | /         |  |
| Date:                                          | . / /     |  |

#### **Statement**

This thesis is submitted in partial fulfillment of the requirements of Ph.D. Degree in Mechanical Engineering, specialization (Production Engineering), Ain Shams University.

The author carried out the work included in this thesis, at the laboratories of Central Metallurgical Research & Development Institute (CMRDI) and the laboratories of Kader Factory for Developed Industries (K.F.D.I.), Arab Organization for Industrialization (A.O.I.).

No part of this thesis has been submitted for a degree or qualification at any other scientific entity.

| Tarek M. | Refaat | H. Gan | neaa |
|----------|--------|--------|------|
| Date:    | /      | /      |      |

Signature

#### **Researcher Data**

Name : Tarek Mohammed Refaat Hamed

Gammeaa

**Date of birth** : 29/5/1975

**Place of birth** : GHARBIA Governorate

First academic degree : Bachelor of Science Degree (B.Sc.)

Field of specialization : Mechanical Engineering University issued the degree: Alexandria University

**Date of issued degree**: July, 2000

Last academic degree : Master of Science (M.Sc.)
 Field of specialization : Mechanical Engineering
 University issued the degree: Ain Shams University

**Date of issued degree**: January, 2011

**Current job** : Assembly Quality Control

department manager, Quality Sector, Kader Factory for

Developed Industries (K.F.D.I.),

Arab Organization for Industrialization (A.O.I.)

#### **Abstract**

Steel sheets joining can be done by many welding techniques which have advantages and disadvantages. Selection of one among them to fabricate specific structure is delicate and most of the time depends on theoretical and practical experience.

In this investigation the fracture mechanics science was used to study the behavior during fracture of joints made by different welding techniques.

Fracture resistance of low alloying element low carbon steel sheet welded joints had been evaluated by Essential Work of Fracture (EWF) testing method. Testing was done on DENT specimens which were prepared by EDM using 0.3 mm wire diameter.

More than thirty two notched specimens with different notch lengths had been tested and the Specific Essential Work of Fracture  $(w_e)$  was evaluated and interpreted by different models. The results were presented and analyzed to make evaluation and assessment processes. Also features of the fracture surface were evaluated using SEM microscopy for comparison as well as the energy consumption of the different welding processes.

The EWF gave results which are matched with the results of tension test, micro hardness test for as received material and all type of welds, also it gave matched results with the power consumption of the different weldments. The weldment of GTAW gave higher Essential Work for Fracture (higher fracture energy) if it is compared to that of FSW and GMAW.

The SEM micrographs for the fracture surface of the as received material, GTAW and FSW weldments tensile test specimens assure those fractures are mixed brittle ductile types but differ in their tendency for fracture while for GMAW the fracture type is ductile which in turn interpreting the tension test results and micro hardness results for weldments.

FSW has the lowest value of energy consumption to fulfill the welded joint if it is compared to GTAW and GMAW.

#### Keywords:

Fracture toughness, Essential Work of Fracture (EWF), Double Notch Edge Tensile (DENT), Electrical Discharge Machining (EDM), The Specific Essential Work of Fracture ( $w_e$ ), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Friction Stir Welding (FSW), Mode 1 Fracture Toughness ( $K_{Ic}$ ), Scanning Electron Microscopy (SEM)

## **Thesis Summary**

It is usually accepted that the welded metallic structure serves its primary functions but with some defects ranges in size for example hair cracks. There are many standards to accept welded joints according to many approval references. Most of these standards are supplied to traditional welding processes like GTAW, GMAW. Friction stir welding (FSW) in general is relatively new welding technique which produces sound weldments. Considering many applications of friction stir welding, there is a great need to fracture toughness appropriate assessment procedure for welded joints made by this new technology. The most familiar procedures and tests which are used to evaluate fracture toughness are as follow:

- Plain fracture toughness (K<sub>1C</sub>)
- Crack Opening Displacement (COD)
- J Integral
- And other standards tests like ASTM (E399)

To measure  $K_{1C}$  this requires higher thicknesses and this is not found in the case of welding small thin sheets of steel. In this work a nonstandard test procedure have been used to evaluate fracture toughness, it depends on concept of the essential work of fracture (EWF). More than thirty two notched specimens were prepared using EDM wire cutting with a wire diameter of 0.3 mm and tensioned using the a universal testing machine.

The obtained results of the specific essential work of fracture  $(w_e)$  were interpreted using the estimated values of  $J_c$  for Mai model and the estimated values of  $w_e$  for Wells method to evaluate the validation of the test. GTAW and GMAW showed a remarkable deviation, on the other hand FSW showed lower deviation if compared to GTAW and GMAW.

However, the weldment of GTAW gave higher essential work for fracture than that of FSW and GMAW. These results matched the properties of the fracture surface that had been investigated using SEM microscope as well as the energy consumption of the different welding processes which proofed that FSW has the

lowest value of energy consumption compared to GTAW and GMAW.

| Table of contents                         | Page |
|-------------------------------------------|------|
| Statement                                 | I    |
| Researcher Data                           | II   |
| Abstract                                  | III  |
| Thesis summary                            | V    |
| Nomenclature                              | X    |
| Acknowledgement                           | XII  |
| List of figures                           | XIII |
| List of tables                            | XIX  |
| Chapter I Introduction                    | 1    |
| Chapter II Literature review              | 3    |
| 2-1 GMAW                                  | 5    |
| 2-2 GTAW                                  | 6    |
| 2-3 FSW                                   | 7    |
| 2-3-1 FSW Process parameters              | 9    |
| 2-3-1-1 FSW tool geometry                 | 9    |
| 2-3-1-2 FSW tool motion and tilting angle | 12   |
| 2-3-1-3 FSW Joint design                  | 12   |
| 2-3-2 FSW material flow modeling          | 13   |
| 2-3-3 FSW microstructure evolution        | 16   |
| 2-3-3-1 FSW nugget zone                   | 16   |
| 2-3-3-2 TMAZ of FSW                       | 18   |
| 2-3-3-3 FSW heat-affected zone (HAZ)      | 19   |
| 2-3-4 FSW mechanical properties           | 19   |
| 2-3-4-1 FSW hardness                      | 19   |
| 2-3-4-2 FSW strength and ductility        | 21   |
| 2-3-4-3 FSW fracture toughness            | 25   |
| 2-3-5 FSW of Steel                        | 31   |
| 2-3-6 FSW selected applications           | 36   |
| 2-3-6-1 Aerospace industry                | 36   |
| 2-3-6-2 Shielding and armor               | 36   |
| 2-4 The essential work of fracture (EWF)  | 37   |
| Chapter III Experimental work             | 41   |
| 3-1 Material                              | 41   |
| 3-2 Mechanical testing                    | 41   |

| 3-2-1 Tension test                                          | 41 |
|-------------------------------------------------------------|----|
| 3-2-2 Hardness testing                                      | 43 |
| 3-3 Welding procedure                                       | 44 |
| 3-3-1 GTAW, GMAW                                            | 44 |
| 3-3-2 FSW                                                   | 44 |
| 3-4 Fusion welding fixture                                  | 47 |
| 3-5 Weldments preparation                                   | 48 |
| 3-6 Welding with different techniques                       | 48 |
| 3-7 Non-destructive testing of steel sheet weldments        | 49 |
| 3-7-1 Visual inspection                                     | 49 |
| 3-7-2 Penetrant test                                        | 49 |
| 3-7-3 X-ray testing                                         | 50 |
| 3-8 Destructive Testing of steel sheet weldments            | 50 |
| 3-8-1 Mechanical testing for the steel sheet weldments      | 50 |
| 3-8-7 Micro hardness test of welded joints                  | 51 |
| 3-8-3 EWF                                                   | 52 |
| 3-8-3-1 Preparation for double edge notch tensile           | 52 |
| specimens                                                   |    |
| 3-8-3-2 EWF procedure                                       | 52 |
| 3-9 Macro -Microstructure examination                       | 54 |
| 3-10 Fracture surface examination                           | 55 |
| 3-10-1Fractogrphy of weldments tensile specimens            | 55 |
| 3-10-2 Nick break test                                      | 55 |
| 3-11 Measuring the energy consumption for welding processes | 57 |
| 3-11-1 Electric energy consumption for GMAW and GTAW        | 57 |
| 3-11-2 Measuring FSW energy                                 | 57 |
| Chapter IV Results and discussion                           | 59 |
| 4-1 Material chemical analysis                              | 59 |
| 4-2 As received material mechanical testing results         | 59 |
| 4-3 Non-destructive test results for weldments              | 61 |
| 4-3-1 Visual test results                                   | 61 |
| 4-3-2 PT results                                            | 61 |
| 4-3-3 RT results                                            | 61 |

| 4-4 Weldments mechanical testing results                              | 62  |
|-----------------------------------------------------------------------|-----|
| 4-4-1 As received material tensile properties                         | 65  |
| 4-4-2 GMAW tensile properties                                         | 68  |
| 4-4-3 GTAW tensile properties                                         | 71  |
| 4-4-4 FSW tensile properties                                          | 73  |
| 4-4-5 Micro hardness test of weldments                                | 76  |
| 4-5 Microstructure and fracture surface examination                   | 79  |
| 4-6 Fracture surface examination                                      | 87  |
| 4-7 Essential work of fracture EWF                                    | 91  |
| 4-7-1 Effect of ligament length on fracture load (P <sub>max.</sub> ) | 105 |
| 4-7-2 The effect of ligament length on maximum                        | 107 |
| displacement                                                          |     |
| 4-7-3 Interpretation of results using different models                | 110 |
| 4-8 Electric energy results for welding processes                     | 113 |
| 4-8-1 Electric energy for GMAW and GTAW                               | 113 |
| 4-8-2 Electric energy used for FSW                                    | 113 |
| 4-8-3 Energy consumption based on measurements                        | 114 |
| 4-8-4 Prediction of energy consumption by energy                      | 115 |
| model for FSW                                                         |     |
| 4-8-5 Calculation of effective strain in FSW using                    | 117 |
| volume constancy concept                                              |     |
| Chapter V- Conclusions and future work                                | 119 |
| References                                                            | 121 |
| Appendix                                                              | 131 |

## **Nomenclature**

AC Alternating current

ASTM American Standard for Testing of Material

ASS Austenitic stainless steel

a Notch length (it represents crack depth)

BW Butt weld BM Base metal

CE Carbon equivalent

CTOD Crack Tip Opening Displacement COD Crack Opening Displacement

DC Direct current

DCEP Direct current electrode positive DCEN Direct current electrode negative

DT Destructive test

DENT Double Edge Notched Specimens

EDS Energy Dispersive Spectroscopic Analysis

EWF Essential work for fracture method

FSW Friction Stir Welding FCAW Flux Cored Arc Welding

F Compressive force

GMAW Gas Metal Arc Welding
GTAW Gas Tungsten Arc Welding

HAZ Heat affected zone

h Height of tool pin (mm)

J<sub>c</sub> The critical J-integral value

K Strength coefficient

K<sub>IC</sub> Fracture toughness mode 1
LHF Low hydrogen ferritic steel
L Nominal ligament length
MMA Manual Metal Arc welding

MAG Metal Active Gas
MIG Metal Inert Gas
NDT Nondestructive test

n Strain hardening exponent PA Horizontal welding position  $P_f$  Power consumed in friction

P<sub>P</sub> Power consumed in plastic deformation

SMAW Shielded Metal Arc Welding
SEM Scanning Electron Microscope
TMAZ Thermo-mechanical affected zone

TWI The Welding Institute t Specimen thickness

UV Ultra violet

U Total Work of Fracture

v Tool traverse speed (mm/min.)  $v_0$  Welding speed (mm/min)  $r_0$  Radius of tool shoulder (mm)

r<sub>p</sub> Plastic zone size

r<sub>i</sub> Radius of the pin (mm)

WZ Weld zone

WPS Welding procedure specifications

 $W_f$ , U Total work for fracture  $W_e$  Essential work for fracture  $W_e$  Non-assential work for fracture

 $W_P$  Non-essential work for fracture  $w_f$  Specific total work for fracture

 $w_e$  Specific essential work for fracture  $w_P$  Specific non-essential work for fracture

μ Coefficient of friction

 $\omega$  Rotational speed of the tool (rev. /min.)

 $\sigma_e$  Effective stress (power law stress)  $\varepsilon_e$  Effective strain (power law strain)

β Shape factor

Material constants (Ramberg-Osgood α, m

parameters)

 $\sigma_{o}$  The yield stress of the material

 $\varepsilon_{\rm o}$  The strain corresponding to yield strength

δc Critical crack opening displacement

# Acknowledgement

At first I would like to thank Allah for helping me completing the work in such form, after that my deepest appreciation must be expressed to

Prof. Dr. : Taher G. A. El-Yazeid, (Ain Shams Univ.)
Prof. Dr. : Aly A. El-Domiaty, (Suez Canal Univ.)

Prof. Dr. : Adel Mohamed B. El Shabasy, (Ain Shams Univ.)
Prof. Dr. : Hala Abd EL-Hakim Hassan, (Ain Shams Univ.)

For their supervision & enthusiastic guidance throughout this work.

I am also grateful to Arab organization of industrization (A.O.I.) represented in its chairman, and to my dearest chairman of Kader Factory for Developed Industries (KFDI), and (KFDI) engineers, technicians and welders for the efforts that have been done to facilitate the procedures of work.

Special thanks to staff of (CMRDI) especially

- Prof. Dr. Abdel Monem Mohamed EL Batahgy (The x-manager of welding technology department)
- Prof. Dr. Morsy Ameen (The present manager of welding technology department)
- Eng. Ahmed Sayah (metallographic laboratory)

I am deeply indebted to all the working team that mentioned above for their kind help.

At last but not least I would like to express my deepest gratitude to my family (especially my parents and my wife) for their patience and encouragement to finish this work.