

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO - EGYPT

Design of Multi-bit Memristor Based Nano Memories

A Thesis

Submitted in partial fulfillment for the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Hagar Hossam El-din Abd Alaziz Ahmed Hendy

B.Sc. of Electrical Engineering Electronics and Communications Engineering Department 2013

Supervised by

Prof. Dr. Mohamed Amin Dessouki

Faculty of Engineering Ain Shams University

Dr. Hassan Mostafa

Faculty of Engineering Cairo University

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO - EGYPT

Examiners Committee

Name: Hagar Hossam Eldin Abd Alaziz Ahmed Hendy.

Thesis: Design of Multi-bit Memristor Based Nano Memories

Degree: Master of Science in Electrical Engineering.

Examiners Committee	Signature
Prof. Dr. Hassanein Amer Faculty of Engineering - American University in Cairo	
Prof. Dr. Hani Fikry Ragaai Faculty of Engineering- Ain Shams University	
Prof. Dr. Mohamed Amin Dessouki Faculty of Engineering - Ain Shams University	

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author in the Department of Electronics and Communications Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Name: Hagar Hossam Eldin Abd Alaziz Ahmed Hendy				
Signature:				
Date:				

Curriculum Vitae

Name: Hagar Hossam El-Din Abd Alaziz Ahmed

Hendy

Date of Birth: 30 of May 1990

Place of Birth: Cairo, Egypt

Last University Degree: B.Sc. in Electrical Engineering

Electronics and Communications Dept.

Date of Degree June 2013

Dedication

To my parents and my brothers, for their everlasting love and support.

Acknowledgment

Praise to Allah, Lord of the Worlds, for giving me the power to finish my master thesis. I would like to thank my supervisors Prof. Dr. Mohamed El-Dessouki and Prof. Hassan Mostafa for their continuous guidance, help, and support. I learned so many valuable things from them, they provided me with all the facilities that I need in my research.

Also, I would like to extend my gratitude to the Academy of Scientific Research and Technology (ASRT), for obtaining this Scholarship "Scientists for Next Generation" (Zewail Cycle) under supervision of Prof. Dr. Mahmoud Sakr and Dr. Merit Rostom.

I would like to thank Dr. Merit Rostom for her great support and guidance, really she make an impact in my life.

Last, but not least, I thank my family, who have been my support and the source of my motivation.

Published Papers

Hossam, H., G. Mamdouh, H. H. Hussein, M. Dessouki and H. Mostafa. "A new read circuit for Multi-bit Memristor based on Time to Digital Sensing Circuit, "*IEEE International Midwest Symposium on circuits and Systems*, Windsor, Ontario, Canada, pp. 1114-1117, 2018.

Hossam, H., M. Dessouki, and H. Mostafa, "Time-Based Read Circuit for Multi-Bit Memristor Memories", *IEEE International Conference on Modern Circuits and Systems Technologies (MOCAST'18)*, Thessaloniki, Greece, pp. 1-4, 2018.

Design of a Multi-bit Memristor Based Nano Memories.

Hagar Hossam Eldin Abd Alaziz Ahmed Hendy

Electronics and Communication Department

Supervised by

Prof. Dr. Mohamed Amin Dessouki- Dr. Hassan Mostafa Hassan

Abstract

Emerging non-volatile universal memory technology is vital for providing the huge storage capabilities required by the new era. The recently found memristor "the missing fourth circuit element", is a potential candidate for the next-generation memories and has received great attention in the last few years because of their unique properties especially in memory technologies. Owing to their analog nature, memristors have a remarkable ability to store multi-bit values in a single cell. In this work, a literature review of the current memory technology (conventional semi-conductor memories) and the non-emerging nonvolatile memories is discussed. Also, different memristor-based applications are reviewed showing that the memory application is the most promising one. Besides, to support the memristor technology specifically or generally RRAM technology, a new Read/Write circuit for multi-bit memristor memories is discussed and compared with the other proposed Read/Write circuits in the literature. The proposed circuit exhibits lower power consumption, less delay when compared to recently published Read/Write circuits. Moreover a comparative study on the capability of different memristor models for transient multilevel memristive memory simulation is discussed and proposed a window function that can improve the accuracy of models based on filament growth theory.

key words: memristor, multi-bit memory, read ciruit, time based ADC