

Studies in f(T) Theories

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science (Applied Mathematics)

by

Shymaa Khaled Ibraheem Abd El Ghany

Department of Mathematics, Faculty of Science Ain Shams University

Supervised by

Prof. Dr. Mamdouh Ishaac Wanas

Prof. Dr. Gamal Gergess Nashed

Department of Astronomy Faculty of Science Cairo University Faculty of Engineering
The British University in Egypt

Dr. Tarek Nasr El-dein Salama

Department of Mathematics Faculty of Science Ain Shams University

Department of Mathematics - Faculty of Science Ain Shams University

Cairo, Egypt 2018

Table of Contents

Ta	nts	ii				
List of Tables						
List of Figures List of Abbreviations						
Al	ostrac	et		X		
Su	ımma	ry		1		
1	The	Standa	ard FRW Cosmology	6		
	1.1	The Ei	instein General Theory of Relativity	6		
		1.1.1	Motivations and Principles	7		
		1.1.2	Geometry of Curved Spaces	8		
		1.1.3	Action and Field Equations	10		
		1.1.4	Tests of General Relativity in Solar System	10		
	1.2	The St	andard FRW Cosmology	12		
		1.2.1	The Cosmological Principle	12		
		1.2.2	FRW Metric	13		
		1.2.3	Friedman Equations	14		
	1.3		sses of GR in Cosmology	16		
		1.3.1	Expansion of the Universe	16		
		1.3.2	CMBR	19		
		1.3.3	Abundance of Light Elements	19		
	1.4		ems of GR in Standard Cosmology	21		
		1.4.1	The Accelerating Expansion of the Universe	21		
		1.4.2	Particle Horizons Problem	22		
		1.4.3	Flatness Problem	23		

		1.4.4	Initial Singularity Problem	24
	1.5	Inflatio	onary Cosmology	25
		1.5.1	Inflation	
		1.5.2	Horizons and Flatness Problems in the Light of Inflation	28
		1.5.3	Slow-Roll Inflation	
		1.5.4	Reheating after Inflation	30
	1.6	Discus	ssion and Aim of the Present Work	
2	Mod	lified G	ravity Theories	35
	2.1	f(R) N	Modified Gravity	35
		2.1.1	Action and Field Equations	35
		2.1.2	Equivalence of $f(R)$ with Brans-Dicke Theory	36
		2.1.3	f(R) Cosmology	38
	2.2	Basic	Elements of the AP-Space	40
	2.3	Pure C	Geometric Field Theories	45
		2.3.1	The Generalized field theory	46
	2.4	f(T) N	Modified Gravity	51
		2.4.1	TEGR	51
		2.4.2	The Action of the $f(T)$ Modified Gravity	52
		2.4.3	The Field Equations of $f(T)$ Gravitational Theory	
	2.5	Discus	ssion and Comments	
3	A Sı	ıggeste	d Bounce Inflation Model in $f(T)$ Cosmology	61
	3.1	Phase	Space of the Standard FRW-Cosmology	62
	3.2		d the Standard FRW-Cosmology	
		3.2.1	A Modified Scale Factor	
		3.2.2	$(\dot{H} - H)$ Phase Space Analysis	
	3.3	A Vial	ble $f(T)$ Model	
		3.3.1	Constructing an $f(T)$ Theory	
		3.3.2	Effective Equation of State and Evolution	78
	3.4	Therm	alization of the Universe	
		3.4.1	Reheating Scenario in Bounce Universe	
		3.4.2	Unified Inflaton-Quintessence Field	85
		3.4.3	Slow-Roll Validity	89
		3.4.4	Energy Conditions	
		D.:	rdial Fluctuations in $f(T)$ Cosmology	
	3.5	Primoi	idiai i idetuations in f (1) cosmology	70
	3.5	3.5.1	Mukhanov-Sasaki Equations	
	3.5			100

4	Future Work	113
Re	eferences	114

List of Tables

2.1	Second Order World Tensors	43
2.2	Comparison Between The Riemannian Geometry and AP-Geometry	44
3.1	Energy conditions for a perfect fluid	95
3.2	Verification of the energy conditions	98

List of Figures

1.1	COBE CMBR measurements as a black body radiation	20
1.2	Inflation solves the horizon problem	29
1.3	The inflaton field oscillation after the end of inflation	33
3.1	Phase space of the flat FRW Universe	64
3.2	Graceful inflation	67
3.3	Bounce Universe	68
3.4	Bounce inflation	69
3.5	Phase Space Diagram of Bounce Universe	72
3.6	Graceful inflation	73
3.7	The torsion $\omega_{\scriptscriptstyle T}$ and total effective EoS parameter $\omega_{\rm eff}$ time evolution	80
3.8	Temperature evolution	83
3.9	The EoS parameter of the scalar field	87
3.10	Matter EoS which produces the observed power spectrum: $V_0 \gg 1$	91
3.11	Matter EoS which produces the observed power spectrum: $V_0 \ll 1$	92
3.12	Energy conditions: $V_0 \gg 1$	96
3.13	Energy conditions: $V_0 = 0$	97
3.14	Energy conditions: $0 < V_0 \ll 1 \ldots \ldots \ldots \ldots$	97
3.15	Evolution of the Hubble radius in the bounce model	108

List of Abbreviations

ΛCDM Λ-Cold Dark Matter - Standard Model of Big-Bang Cosmology

AP Absolute Parallelism

B-B Big-Bang

BB Building Blocks

CMBR Cosmic Microwave Background Radiation

COBE Cosmic Microwave Background Explorer

DEC Dominant Energy Condition

EoS Equation of State

FRW Freidmann-Robertson-Walker

GFT The Generalized Field Theory

GR The General Theory of Relativity

MD Matter Domination

NEC Null-Energy Condition

RD Radiation Domination

SEC Strong Energy Condition

TEGR The Teleparallel Equivalent to General Relativity

WEC Weak Energy Condition

WMAP Wilkinson Microwave Anisotropy Probe

Acknowledgements

My special thanks to my supervisor Prof. *Mamdouh I. Wanas* who encouraged and directed me in writing this thesis, and who have been so helpful and cooperative in giving his support at all times.

I would like to express my sincere gratitude and appreciation to my advisor Prof. *Gamal G. Nashed*, who suggested the point of research, for his support and encouragement. His guidance helped me a lot in research and in writing this thesis.

It is with appreciation to thank my Dr. *Tarek N. Salama* for supervising my thesis. I am especially grateful to Dr. *Waleed El Hanafy* for his inspiration, and his great efforts to explain things clearly and simply. He is a coauthor of the article on which this thesis is based. Also, I would like to thank Dr. *Samah Nabil* for her kind assistance in revising writing of this thesis, and for her cooperation and efforts. I would like to thank *Ola Abdallah* for her kind and continuous support.

I wish to express my deep gratitude to the Mathematics Department, Faculty of Science, Ain Shams University. All of my professors and demonstrators whom have taught and supported me.

I thank my family: My parents, *Lobna*, *Mohammad* and *Belal* whom encouraged me and prayed for me throughout the time of my research and whom always have loved me unconditionally. To my mother, without her, I would not have been where I am, and what I am today.

Abstract

Despite many successes have been achieved by the Standard Friedmann-Robertson-Walker Cosmology, there are some other problems which are not solved, so far. We construct a bounce inflation model in a viable f(T) modified gravitational theory. In this model, the Universe gracefully exit into the Standard Friedmann-Robertson-Walker decelerated Universe. We make use of the phase space technique to analyze the evolution of the Universe. We study the cosmic thermal evolution and show that hypothesized model predicts a supercold Universe during the pre-contraction phase. This result is consistent with the requirements of the slow-roll scenarios.

Moreover, we show that the proposed model performs a reheating period by the end of the contraction with a maximum temperature just below the grand unified theory temperature. However, it matches the radiation temperature of the hot big-bang at later stages. We show that the equation-of-state due to the effective gravitational sector suggests that constructed model is self-accelerated by teleparallel gravity. After that, we assume that the matter component is a canonical scalar field and study the slow-roll parameters. We obtain the scalar field potential induced by f(T) gravitational theory. When we study the power spectrum of the model, we find that it is nearly scale invariant. Also, we show that the model under consideration unifies inflaton and quintessence fields in a single model. Finally, we revisit the primordial fluctuations in f(T) bounce cosmology and study the fluctuations that are produced at the pre-contraction phase.

Summary

The Standard FRW (Big-Bang) Cosmology has succeeded to trace the cosmic thermal evolution in an elegant way by comparing the particles interactions rate with the expansion rate of the Universe. At very hot stages, the rate of particle interactions is much larger than the expansion rate of the Universe and local thermal equilibrium could be achieved. At later stages, when the Universe cools down, the interaction rate decreases faster than the expansion allowing the particles to decouple from the thermal path at the equality of the rates. On the other hand, the Standard big-bang Cosmology suffers many problems, e.g., *Initial* Singularity, flatness, particle horizons, etc. Solving these problems requires a superfast accelerated expansion phase at some early time, i.e., cosmic inflation [6, 57, 93, 116, 123], which is usually represented by an exponential expansion at $\sim 10^{-35}$ s after the big-bang. As a result, the Universe becomes isotropic, homogeneous and approximately flat. Standard inflation models assume the existence of a self-coupled scalar field (inflaton) minimally coupled to gravity, whose potential governs the evolution of the Universe during inflation. During this stage, the initial quantum fluctuations cross the horizons and transform into classical fluctuations producing a nearly scale-invariant scalar perturbations spectrum. Although inflation solves the above mentioned problems, one of the fundamental problems still exists, that is the *initial singularity* which arises when tracing the Universe back in time as divergences of the cosmic temperature and density. Since the initial singularity is before inflation raids, the problem can not be solved within inflationary Cosmology. Another serious problem is the trans-Planckian problem which also appears in inflationary cosmology where the cosmological scales that we observe at present time correspond to length scales smaller than the Planck length at the onset of inflation [22, 98].

One of the suggested alternatives is by assuming that the scale factor initially shrinks down to a nonzero minimal value then *bounce* to an expanding phase. In this case a singular or nonsingular bounce Universe can be obtained [29, 108]. This idea has been extended to recognize nonsingular cyclic Universe models, e.g., pre-big-bang [55]. Other than the nonsingular issue, bounce cosmologies have many interesting features such as solving the horizon and flatness problems even in the initial shrinking phase. Also, these models can generate scale-invariant scalar perturbations as supported by observations. However, bounce models are usually faced by two main problems [7, 127]: The first is called the *anisotropy* problem, that is in the contraction phase the anisotropies grow faster than the background, so that the contraction ends with a complete anisotropic Universe which violates the cosmological principle and bouncing to an expanding phase will not occur. The second is called the *ghost instability* problem, that is the bounce cosmology violates the null energy condition (NEC), which gives rise to ghost degrees-of-freedom. However, both two issues have been successfully resolved within a nonsingular bounce cosmology [26, 30, 31].

The above mentioned anisotropy problem can be deluded if the equation-of-state parameter is larger than unity during contraction, then the background dominates the anisotropies. Indeed, a large equation-of-state parameter constrains the potential to be *negative* in scalar field models. On the other hand, the ghost degrees-of-freedom is an outcome of using the GR theory, while other modified gravity theories could alter the situation (for reviews on modified gravity theories, see, for instance, [12, 14, 34, 41, 48, 78, 85, 106, 107]). In f(T) modified gravity theories, where T is the torsion scalar described by the Weitzenböck connection in the teleparallelism [11,52,54,70,71], it has been shown that nonsingular bounce solutions can be constructed in a straightforward way [28,29,32]. Also, it has been shown that f(T) gravity combined with holonomy corrected loop quantum cosmology supports the bounce Universe model [7,58–60].

Constructing a viable bounce f(T) model is the main object of this thesis and it is discussed in details in Chapter 3, where we propose a possible choice of a scale factor that is

capable to perform a reliable cosmological model with two possible scenarios: a graceful exit inflation or a bounce graceful exit inflation. Chapter 3 is dedicated then for corresponding evolution and phenomenology where we use the phase space to study the thermal evolution of the Universe.

The thesis has the following structure:

Cahpter 1: The Standard FRW Cosmology

Einstein General Theory of Relativity (GR) is presented in some details. We start with its motivations and its two main covariance and equivalence principles. Then, its main features and formulation in Curved Geometry of Riemannian Space are given. The Action is written and Field Equations are then derived using the least action principle. Many successes of GR are then exhibited, namely, applications into the Solar System dynamics including precession of planets and other GR tests and the successes in Cosmology for the expansion of the Universe. On the other hand, some problems of GR in its cosmological applications were discussed. Specifically, we discuss accelerating expansion of the Universe, the particle horizons and the flatness problems of the world models. Then, we revise the idea of inflation as a potential solution for the horizons and flatness problems. We discuss the slow roll case in details and deduce the slow-roll conditions and define the observable quantities from inflation. Finally, we discuss the quadratic potential for inflation and the reheating mechanism after inflation.

Cahpter 2: Modified Gravity Theories

The f(R) and f(T) modified gravity theories are reviewed. First, the f(R) action and field equations are introduced and the equivalence of f(R) with Brans-Dicke theory is discussed. After that, some elements of the cosmological phenomenology of f(R) are introduced and an effective equation-of-state parameter is deduced. For illustration, the power R^n example is considered. Then the f(T) modified gravity is introduced. We review first

the teleparallel gravity equivalent theory of GR (TEGR) by reviewing the basic elements of the AP-Space in four dimensions by introducing its basic structure components, the tetrads. We then define the torsion, contortion and superpotential tensors and the torsion scalar in terms of them. After that, the action of f(T) is introduced as a direct generalization of the TEGR action. Finally, the f(T) field equations are derived in details.

Cahpter 3: A Suggested Bounce Inflation Model in f(T) Cosmology

The work is organized as follows. In Section 3.1, the $\dot{H} - H$ phase space of the FRW Cosmology is discussed in some details. In Section 3.2, we discuss a possible choice of a scale factor capable to perform a reliable cosmological model. We show that two possible scenarios could be used according to the values of the model parameter: a graceful exit inflation or a bounce graceful exit inflation. Also, we use the nice feature of f(T) cosmology to represent the modified Friedmann equation as a one-dimensional autonomous differential equation. This enables to construct the corresponding $\dot{H} - H$ phase space, where the dynamical evolution of the model can be exhibited clearly. In Section 3.3, we construct an f(T) theory corresponding to the bounce inflation model. Also, we evaluate the equation-of-state of torsion gravity showing its role to describe a healthy bounce Universe. In Section 3.4, we discuss the thermal evolution of the Universe showing that its maximum reheating temperature is at the bounce point. We show how the slow-roll condition can arise naturally in this model as a consequence of its thermal evolution. We assume that the matter component of the Universe is a canonical scalar field, and then we obtain the potential corresponding to the proposed f(T) theory. The slow-roll potential provides a nearly scale invariant spectrum consistent with observations. So the proposed model does not suffer from a large tensor-to-scalar ratio that is usually obtained in bounce scenarios. In addition, we show that for a particular case, the model can unify inflaton-quintessence fields in a single model. We also show that the null-energy condition is not generally violated, which makes the model safe from the ghost instability problem. In Section 3.5, we extend our analysis to investigate the f(T) theory at the perturbation level to study the

primordial fluctuations during the precontraction phase. The work has been summarized and concluded in Section 3.6.

Also, a list of references is included.

The main results of the thesis are published in the joint paper

K. Bamba, G.G.L. Nashed, W. El Hanafy, Sh.K. Ibraheem, "Bounce inflation in f(T) Cosmology: A unified inflaton-quintessence field", Phys.Rev. D94 (2016) no.8, 083513 (arXiv:1604.07604 [gr-qc])