

Preparation of Polymeric Materials by the Use of γ-rays for Some Environmental Applications

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy of Science in Chemistry

By

MERAL HOSNY ABD ELGAWAD FARAG

B.Sc. Faculty of Sci.(Geochemistry), Shebin El-kom University, 1994. Master in Physical Chemistry, Shebin El-kom University, 2002

Under Supervisors:

Prof. Dr. El-Sayed A. Soliman

Professor of Organic Chemistry; Chemistry Department-Faculty of Science- Ain Shams University

Prof. Dr. El-Saved A. Hegazy

Professor of Radiation Chemistry; Polymer Chemistry Department National Center for Radiation Research and Technology.

Prof. Dr. Hanaa K. Mohamed

Professor of Radiation Chemistry; Polymer Chemistry Department-National Center for Radiation Research and Technology.

Prof. Dr. Hosam A. Shawky

Professor of Hydrochemistry- Hydrochemistry Department- Desert Research Center

APPROVAL SHEET

Preparation of Polymeric Materials by the Use of γ-rays for Some Environmental Applications

By

MERAL HOSNY ABD ELGAWAD FARAG

Submitted in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy of Science

To

CHMESITRY DEPARTMENT FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY

Thesis approved by

Prof. Dr. Hesham F. Ali

Professor of Nuclear Chemistry-Atomic Energy Authority.

Prof. Dr. El-Sayed H. Eltamany

Professor of organic Chemistry- Faculty of Science- Suis Canal University.

Prof. Dr. El-Sayed A. Soliman

Professor of Organic Chemistry- Faculty of Science- Ain Shams University.

Prof. Dr. El-Sayed A. Hegazy

Professor of Radiation Chemistry- National Center for Radiation Research and Technology.

ACKNOWLEDGEMENT

First of all, thanks to Allah almighty for the infinite helps and persistent supply with patience and efforts to accomplish this work successfully.

I would like to express my sincere respect and gratitude to **Prof. Dr. El-Sayed A. Soliman** for his valuable advice, encouragement and guidance through this work. I think without his help this work wouldn't come out.

I would like to express my great indebt and appreciation to my godfather **Prof. Dr. El Sayed A. Hegazy** for his precious care encouragement and I'm very proud being his student. He was prepared to sit and listen to my troubles and he is the major reason this thesis was completed. He is a very knowledgeable advisor. Thank him so much.

I would like thank to my brilliant and truly supervisor Prof. Dr. Hanaa K, Mohamed for helped me and supported advices from time to time successfully in completing this work.

Many thanks to prof. Dr. Hosam A. Shawky to allow me to use the analysis equipments in his group when I collected data for complete this work.

Last, I express my love and thank to my parents who encouraged me and prayed for me throughout the time of my research, my husband and my close friends for their supporting and encouraging advices in fulfillment of this work.

Finally, this dissertation is dedicated to my late father who has been my constant source of inspiration. May God have mercy on my father.

Once again thank you very much for all interest and support during the completion of the thesis

AIM OF WORK

The main part of this study is restored and maintains the chemical, physical and biological of water from industrial wastewater treatment by the adsorption for removal of toxic heavy metals that effect on the human in the world by through three steps:

- (1)- Grafting of backbone LDPE film by GMA as a monomer and irradiated by γ -ray.
- (2)- Opining the epoxy groups in grafted-films with different functional groups using chemical modification of ion exchange.
- (3)- The reaction between epoxy groups and different functional groups of grafted films was converted from hydrophobic into hydrophilic films by ion exchange to improve the adsorption process.

The characterization of grafted-treated films have been investigated. Many modification treatments have been investigated on these graft-treated films to possess excellent properties in field of ion-exchange and can be used in industrial wastewater treatments and adsorption processes with high efficiency and good tool economically.

LIST OF CONTENT

	Page
ACKNOWLEDGEMENT	
AIM OF WORK	
LIST OF CONTENTS	
LIST OF FIGURES	
LIST OF SCHEMES	
LIST OF TABLES	
ABBREVIATION	
ABSTRACT	
CHAPTER I	
INTRODUCTION	
Graft Copolymerization	2
Radiation-Induced Graft Copolymerization	5
Grafting with GMA Monomer	6
Ion Exchange Membranes	7
Adsorption Process	10
Wastewater Treatment	11
Removal of Malachite Green Dye	12
Removal of Phenol	14
Removal of Heavy Metals Ions	
BOD ₅ and COD in Wastewater	
CHAPTER II	
LITERATURE REVIEW	
	10
Radiation-Induced Graft Copolymerization	
Graft Copolymerization	
Grafting with GMA Monomer	21

Applications of Ion Exchangers27
Applications of Wastewater Treatment
• Adsorption of Malachite Green Dye30
• Adsorption of phenol34
• Removal of Heavy Metals Ions39
• Removal of BOD ₅ & COD44
CHAPTER III
EXPERIMENTAL
MATERIALS AND METHODS
Polymer Substrate and monomer47
Solvents and Chemical Reagents47
APPARATUS AND METHODS
• Gamma Radiation Source48
• Preparation of LDPE grafted film48
CHEMICAL MODIFICATION OF MONOMER
• Treatment with diethyl amine(DEA)50
• Treatment with Hydroxyl amine (HA)52
• Treatment with Phosphoric acid (H ₃ PO ₄)53
CHARACTERIZATION AND ANALYSIS
• FTIR-Spectrophotometric Measurements54
• X-Ray Diffraction Measurements54
• SEM-Scanning Electron Microscope56
THERMAL ANALYSIS
• Thermogravimetric Analysis(TGA)56
• Differential Scanning Calorimetry(DSC)56
• Water Uptake Measurements57

Adsorption Procedure	57
• Adsorbent	58
• Adsorbate	58
ADSORPTION STUDIES	
Malachite Green Dye	59
• Phenol	60
Toxic Heavy Metals	61
CHEMICAL ANALYSIS OF WASTEWATER	
• Biological Oxygen Demand (BOD ₅)	62
a. Reagents of BOD	62
b. Preparation of BOD sample	63
Chemical Oxygen Demand (COD)	63
a. Reagents of COD	64
b. Procedure of COD	64
CHAPTER IV	
RESULTS AND DISCUSSION	
PART I: PREPARATION OF GRAFTED FILMS F	OR THE
USE AS ADSORBENTS MATERIALS	66
. Radiation Induced Grafting of GMA onto LDPE	
Films	67
. Effect of the Solvent	67
. Effect of Irradiation Dose	69
. Effect of Monomer Concentration	71

CHEMICAL MODIFICATION OF GRAFTED FILMS
. Treatment of The prepared graft copolymer72
CHARACTERIZATION AND ANALYSIS
. FTIR-Spectroscopy Measurements76
. X-Ray Diffraction (XRD)79
. Scanning Electron Microscope (SEM)88
THERMAL ANALYSIS
.Thermogravimetric Analysis (TGA)94
. Differential Scanning Calorimetry (DSC)101
. Water Uptake of Grafted-Treated Films110
PART II: APPLICATION OF THE GRAFTED TREATED
FILMS IN WASTEWATER TREATMENT114
. Removal of Malachite Green Dye114
. Effect of Initial Dye Concentration115
.Effect of pH116
. Effect of Contact Time117
. Effect of Temperature119
Characterization of Malachite Green Dye
. FTIR-Spectra Measurements120
. Scaning Electron Microscope SEM123
Kinetic Studies of MG dye125
a. Pseudo-First-order Model125
bPseudo-Second-order Model126
Adsorption Isotherms of MG Dye128
a. Langmuir Isotherm128

b Freundlich Isotherm	130
.Thermodynamic Studies	132
The Use of Grafted Treated Films in Adsorption of	
Phenol	
. Effect of Initial Concentration	137
. Effect of pH	138
. Effect of Contact Time	
. Effect of Temperature	142
Kinetic Studies of Phenol	143
aPseudo-First-order Model	143
bPseudo-Second-order Model	145
Adsorption Isotherm of Phenol	147
a Langmuir Isotherm	147
b Freundlich Isotherm	149
. Thermodynamic Studies	151
Characterization on Phenol Adsorption	152
. FTIR-Spectra Measurements	152
. Scaning Electron Microscope (SEM)	156
The Use of Grafted Films in Adsorption of Toxic He	avy
Metals from Real Industrial Wastewater	159
Toxic Heavy Metals	159
. Removal of Organic Matter	170
a. Removal of BOD ₅ and COD	
-	
REFERENCES	173-212
SUMMARY AND CONCLUSION	
ARABIC SUMMARY	

LIST OF FIGURES

Number		Page
Figure (I.1)	Simplified structure of graft copolymer	3
Figure (I.2)	The chemical structure of Glycidyl Methacrylate (GMA)	6
Figure (I.3)	Structure of the polyethylene surface (a)-without functional groups, (b-) after introducing functional groups.	8
Figure (I.4)	Schematic diagram of basic principle of ion exchange reaction.	9
Figure (I.5)	The Chemical Structure of Malachite Green (MG) dye	13
Figure (I.6)	The Chemical Structure of Phenol	14
Figure (I.7)	Types of Removal of Heavy Metals	15
Figure (IV.1)	Effect of irradiation dose on the grafting of GMA onto LDPE films; 1,4-Dioxane as a diluent; monomer concentration 20(wt %).	70
Figure (IV.2)	Effect of monomer conc. on the grafting of GMA onto LDPE films using dioxane as a diluent and irradiation dose; 20 kGy.	72