

A PASSIVE HOUSE STRATEGY FOR EFFICIENT ENERGY SAVING IN EGYPTIAN BUILDINGS

By **Eng. Hebat Allah Abdel-Halim Mahmoud**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Architectural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

A PASSIVE HOUSE STRATEGY FOR EFFICIENT ENERGY SAVING IN EGYPTIAN BUILDINGS

By **Eng. Hebat Allah Abdel-Halim Mahmoud**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Architectural Engineering

Under the Supervision of

Prof. Dr. Mohamed Medhat Dorra

Professor of Architectural Design Architectural Department Faculty of Engineering, Cairo University **Prof. Dr. Ahmed Ahmed Fikry**Professor of Environmental Design
Architectural Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

A PASSIVE HOUSE STRATEGY FOR EFFICIENT ENERGY SAVING IN EGYPTIAN BUILDINGS

By **Eng. Hebat Allah Abdel-Halim Mahmoud**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Architectural Engineering

Approved by the Examining Committee

Prof. Dr. Mohamed Medhat Dorra (Thesis Main Advisor)
Professor of Architectural Design, Department of Architecture, Faculty of Engineering, Cairo University

.

Prof. Dr. Ahmed Ahmed Fikry (Advisor)
Professor of Architectural & Environmental Design, Department of
Architecture, Faculty of Engineering, Cairo University

Prof. Dr. Ayman Hassan (Internal Examiner)
Professor of Architecture & Landscape Design, Department of
Architecture, Faculty of Engineering, Cairo University

Prof. Dr. Mostafa Rafaat (External Examiner)
Professor of Architectural Design, Department of Architecture, Faculty of Engineering, Ain Shems University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

Engineer's Name: Hebat Allah Abdel-Halim Mahmoud

Date of Birth:14/3/1982Nationality:Egyptian.

E-mail: Hebahalim2000@gmail.com

Phone: 01005118655

Address: 32 Compound October Hills 2, 6th of October

Registration Date: 1/10/2016 **Awarding Date:** //2019

Degree: Master of Science

Department: Architectural Department

Supervisors:

Prof. Dr. Mohamed Medhat Dorra Prof. Dr. Ahmed Ahmed Fikry

Examiners:

Prof. Mostafa Rafaat (External examiner) Professor of Architectural Design, Department of Architecture, Faculty of Engineering, Ain Shems

University

Prof. Ayman Hassan (Internal examiner)
Porf. Medhat Dorra (Thesis main advisor)

Porf. Ahmed Ahmed Fikry (Advisor)

Title of Thesis:

A PASSIVE HOUSE STRATEGY FOR EFFICIENT ENERGY SAVING IN EGYPTIAN BUILDINGS

Key Words:

Passive House Criteria; Energy efficiency; Egyptian energy situation; Electricity prices increasing; Energy consumption

Summary:

Egyptians desperately need to save energy, especially in residential buildings. Where the government raised the electricity tariff and announced a policy to reduce electricity subsidies and then reduced to zero in 2021. This sudden economic situation created a real problem for the Egyptian consumers of electric power. This was the main motive for conducting this study to find a solution to save energy in the Egyptian buildings. The aim of this research is to develop a proposed framework for energy efficiency in Egyptian buildings by adopting the Passive House Criteria PHC as a leading global energy efficiency standard that provides up to 70-90% of energy consumption.

الحمد لله الذي بنعمته تتم الصالحات الحمد لله الذي اعانني على اعداد هذه الرسالة

Disclaimer

I hereby declare that this is my own original work and that no part of it has been submitted for a degree of qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Hebat Allah Abdel-Halim Mahmoud	Date:
Signature:	

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Prof. Dr. Mohamed Medhat Dorra, the Professor of the Architectural Design, Faculty of Engineering at Cairo University for his support to complete this research. And all the warm thanks and appreciation to Prof. Dr. Ahmed Ahmed Fikry, the Professor of the Architectural & Environmental Design, Faculty of Engineering at Cairo University who was always encouraging and supporting me whenever I ran into a trouble spot or had a question about my research, he consistently allowed this paper to be my own work but steered me in the right direction whenever he thought I needed it.

I would also like to acknowledge Dr. Reham Aldessoky the Associate Professor and Head of the Architectural Department, Faculty of Engineering at Bny Sweif University, and I am gratefully indebted for her very valuable comments on this thesis. Besides, the remarkable contribution for Eng. Soha Elgohary; the Teacher Assistant at the Architectural Department, Faculty of Engineering at Cairo University for her supporting and helping whenever I need her.

I would also like to thank my family (my husband, my kids and my mother) who were contributed in the success of preparing this thesis and special dedication to the most patient and cooperative person, my father; Eng. Abdel-Halim Mahmoud. Without their passionate helping and supporting, I could not have been successfully conducted this thesis.

Table of Content

ACKNOWLEDGMENTS	I
DEDICATION	ІІ
TABLE OF CONTENTS	III
LIST OF TABLES	IV
LIST OF FIGURES	V
ABSTRACT	VI
CHAPTER ONE: INTRODUCTION	1
1.1. Introduction	1
1.2.Observations and Research Problem	2
1.2.1.Observation	2
1.2.2.Research Problem	2
1.3.Research Questions	3
1.4.Research Objectives	3
1.5.Research Methodology	3
1.6.Research Structure	5
CHAPTER TWO: REVIEW OF THE ENERGY SITUATION IN EGYPT	8
2.1.Overview	8
2.2.The Energy Situation in Egypt	9
2.2.1.The Electricity Situation in Egypt	10
2.2.2.The Egyptian Governmental Economic Reform Plan	12
2.2.3.Increases in Electricity Bills	13
2.3. Analysis of Energy Efficiency Strategies in Egypt	15
2.3.1.The Egyptian Building Energy Codes	16
2.3.1. The Egyptian Green Building Council (EGBC)	16
2.3.2.Barriers to Apply the Energy Efficiency Codes	17
2.4. The Egyptian Government Plans Towards Energy Issues	17
2.4.1.Increase electricity production	18
2.4.2.Egyptian governmental strategy to to expand the built industry	18
2.5.Energy Efficiency (EE) in Egyptian Buildings	20
Conclusion	22
CHAPTER THREE: ENERGY EFFICIENCY IN BUILDINGS	23
3.1. Overview	
3.2. Energy Efficiency History	23

	3.3. Energy Efficiency Definition	25
	3.4. Energy Efficiency Systems	26
	3.4.1. BREEAM	27
	3.4.2. LEED	30
	3.4.3. The Green Pyramid Rating System GPRS	32
	3.4.4. The Passive House Criteria	35
	3.5. Comparative Analysis Between PHC, LEED, BAREEM, & GPRS	35
	Conclusion	38
C	HAPTER FOUR: THE PASSIVE HOUSE LITERATURE REVIEW	39
	4.1. Overview	39
	4.2. The History of Passive House (PH)	39
	4.2.1. Description of the first PH building in Darmstadt, Germany	39
	4.2.2. Foundation of the Passive House Institute (PHI)	41
	4.3. Passive House Definition	41
	4.4. Passive House principles	43
	4.4.1. Thermal insulation (Building Envelope)	44
	4.4.2. Thermal bridges Free Design	47
	4.4.3. Continuous Airtightness	48
	4.4.4. Passive House Windows	50
	4.4.5. Energy Recovery Ventilation System (ERV)	51
	4.5. Passive House Criteria	54
	4.6. Passive House Planning Package PHPP	55
	4.7. Passive House Advantages	55
	Conclusion	57
	CHAPTER FIVE: CERTIFIED PASSIVE HOUSE BUILDINGS WORLDWIDE	
C	ASE STUDIES	
	5.1. Overview	
	5.2. Passive House Case Studies	
	5.2.1. Passive House office building in Dubai, UAE	
	5.2.2. The Austrian Embassy in Jakarta, Indonesia	
	5.2.3. The O'Neil Passive House Residential Building, California, USA	
	5.2.4. The Passive House Villa, Qatar	
	5.2.5. The House at Cornell Tech Campus, New York, USA	
	5.3. Passive House Buildings Performance Comparative Analysis	78
	Conclusion	80

CHAPTER SIX: A PROPOSED FRAMEWORK TO ADOPT THE PAS	SSIVE HOUSE
CRITERIA IN EGYPT	81
6.1.Overview	81
6.2. The Suggested PHC Adoption Management Framework	81
6.2.1. The Architectural Approach	84
6.2.2. The Governmental Approach	97
6.2.3. The Academic Approach	106
Conclusion	108
DISCUSSION AND CONCLUSIONS	109
REFERENCES	111
APPENDIX A: ONE APPENDIX	•••••
APPENDIX B: ANOTHER APPENDIX	•••••

List of Tables

Table	1.1	The Research Structure	6
Table	3.1	GPRS Category Weighting	34
Table	3.3	Comparison Between the International Energy Efficient	
		Criteria	38
Table	4.1	the differences between materials` thickness and conductivity to	
		reach u-value of 0.13 W/(m ² K)	46
Table	4.2	Comparison between conventional house, low energy house and	
		Passive House in terms of Energy Use	54
Table	4.3	Passive House Criteria for new buildings	55
Table	4.4	Comparison between new and retrofitted buildings` criteria	55
Table	5.1	floor slab insulation materials, Source: (PHI, 2016)	62
Table	5.2	wall insulating materials, Source: (PHI, 2016)	62
Table	5.3	Wall insulation materials, Source: (PHI, 2015)	67
Table	5.4	Ceiling insulation materials, Source: (PHI, 2015)	67
Table	5.5	Energy Efficiency Comparison between PH building pre-	
		retrofit and post-retrofit.	70
Table	5.6	PHV and STV U-values, Source: (PHI, 2017)	73
Table	5.7	PHV and STV construction materials	74
Table	5.8	PH buildings performance assessment	78
Table	6.1	PHC Adoption Management Framework	82
Table	6.2	PHC Plan & Design Management Approach	85
Table	6.3	insulation materials comparison	90
Table	6.4	The Tile foam energy saving percentage	90
Table	6.5	Comparison between different window types	92
Table	6.6	The expected important Stakeholders in the target step	100

List of Figures

Figure	1.1	Research methodology	4
Figure	2.1	Egyptian installed capacity of different energy resources by the Fiscal Year 2015-2016	10
Figure	2.2	A Pie-Chart of the Egyptian Primary Energy Consumption in the Year 2016	11
Figure	2.3	The electricity generation in Egypt in the last ten years	12
Figure	2.4	The electricity consumption in Egypt	12
Figure	2.5	Distribution of electricity consumption by sector in Egypt	13
Figure	2.6	Electricity Facts by bracket 2017/2018	14
Figure	2.7	Subsidy by the bracket in 2017-2018	15
Figure	2.8	Comparison in countries income expenditure on electricity	16
Figure	2.9	The new Egyptian plant power	19
Figure	2.10	Egyptian growth rate in all sectors	20
Figure	3.1	Consumption of fossil fuel	25
Figure	3.2	CO2 emissions impact	25
Figure	3.3	Factors that affect energy consumption	27
Figure	3.4	Countries with BREEAM certified projects	28
Figure	3.5	BREEAM certification benchmarks	29
Figure	3.6	BREEAM criteria in details with average weighting & credits for each	30
Figure	3.7	Countries with LEED certified projects	31
Figure	3.8	LEED certification benchmarks	32
Figure	3.9	LEED criteria in details with average weighting & credits for each	32
Figure	4.1	Southern view of the first Passive House in Darmstadt- Kranichstein	41
Figure	4.2	The design features of the Passive House in Darmstadt, Germany	41
Figure	4.3	Passive House energy savings	43
Figure	4.4	Annual consumption for different energy efficiency criteria	44
Figure	4.5	Passive House principles	45
Figure	4.6	Examples of super-insulated external wall for PH building	47
Figure	4.7	The curial joints that cause the thermal bridges	49
Figure	4.8	Clarifying the problem of 1mm wide gap through a wall section	50
Figure	4.9	Illustrate the difference between airtightness and air leakage concepts	50
Figure	4.10	PH windows section	51
Figure	4.11	PH Window before installation and after installation	52
Figure	4.12	Illustrate the exhaust air (brown) and the fresh air (light green).	53
Figure	4.13	Clarifies PH Ground Heat Exchange	54
Figure	5.1	The Map of Certified Passive House Building	58

Figure	5.2	North/west view of the MBRSC Office Building, Dubai	60
Figure	5.3	Aerial view of the MBRCS Office Building, Dubai – the PV field is clearly visible	60
Figure	5.4	MBRCS Office Building ground and first floor plans	61
Figure	5.5	the foundation of the building during the construction phase with clarifying of insulation materials	61
Figure	5.6	PHPP Verification Sheet	63
Figure	5.7	PHPP verification sheet	63
Figure	5.8	Main facade of the Austrian embassy in Jakarta	65
Figure	5.9	Jakarta embassy ground and first floor plans	65
Figure	5.10	Some technical features of Austrian Embassy	66
Figure	5.11	The O'Neil Passive House before and after PH retrofitting design	
Figure	5.12	The remodeling floor plan	68 69
Figure	5.13	Exterior wall showing wall construction materials	69
Figure	5.14	Typical villa plan	72
Figure	5.15	The PH villa PHV and the Standard villa STV	73
Figure	5.16	Annual total energy consumption for the PHV & STV	74
Figure	5.17	PHV & STV occupied space indoor temperatures	75
Figure	5.18	The House at Cornell Tech Campus	76
Figure	5.19	The building orientation, North & South elevations	76
Figure	5.20	The building ERV system	77
Figure	5.21	comparison between PH buildings & conventional buildings in terms of primary energy use	79
Figure	6.1	The suggested sealing tape 10 m x 125 mm	91
Figure	6.2	Double Glazed PVC section	92
Figure	6.3	PAUL, Novus 450	93
Figure	6.4	Energy Efficient appliances	94
Figure		The Egyptian EE Building Code structure with five steps and eleven processes	98
Figure	6.6	The Egyptian EE Target Factors	98
Figure	6.7	Egyptian EE Strategy Factors	100
Figure	6.8	Egyptian EE Implementation Factors	102
Figure	6.9	Egyptian EE Enforcement factors	103
Figure	6.10	Egyptian EE Evaluation factors	105

Abstract

The Egyptians are in great need for saving energy consumption, especially in residential buildings, which has become inevitable. In July 2016, the government had raised the electric energy tariffs and declared a policy to reduce the electric power subsidy gradually and then to cut it to ZERO in 2021. This sudden economic situation created a real-life problem for Egyptian citizens reflected in their inability to pay the ever-increased electric monthly bill. In addition, with the warnings of climate change caused by the global warming phenomena, buildings are expected to consume more energy in the future to sustain the comfortable living environment. This complicated problem, has multi-faces of economic and environmental roots. This research found that the "German Passive House Criteria" has achieved tremendous energy saving up to 70-90% in buildings and has been successfully adopted and applied throughout the world.

This research studies the following topics: analyzing of the current energy situation in Egypt, reviewing of current and future programs for energy efficiency and identifying key barriers to apply energy efficiency strategies. Then, clarifying the importance of the energy efficiency worldwide, studying and comparing the most used energy efficiency systems in buildings globally (LEED, GPRS, BREEAM & PHC) to introduce the reason for selecting the PHC for this study. After that, analyzing the Passive House Criteria concept, principles & criteria requirements. Following that, the applied part of the study comes to investigate relevant best practices and lessons learned from international real case studies. Finally, the research suggests a framework to have ultra-low energy Egyptian buildings successfully.

The aim of this research is to develop a framework as a solution to save energy consumption dramatically in the Egyptian buildings by adopting the Passive House Criteria PHC. It is considered the power of now energy efficiency standard worldwide, so, the Resolution of the European Parliament called for its implementation by all member states by 2020. This suggested framework embeds the PHC with a design management processes to develop an Energy Efficiency Building Criteria in Egypt. This framework is divided into three approaches; Architectural approach, Governmental approach, and Academic approach.

This research expects to demonstrate that such framework could be feasible, and that would offer a range of benefits: on the individual level; it ensures that residents would significantly pay less for the energy used, on the state level; it is supposed to save several Mega-Watt from the national electric power load, gain a greener environment, and add value to the overall Egyptian economy. The result will include an integrated framework to adopt the PHC in the Egyptian buildings. Finally, the research concludes with several features which highlight the potential for a promising move towards ultra-low energy buildings ready to meet the challenges of the region in the future. The research recommendations should be followed up with further studies to validate the PHC across different building types.