

Ain Shams University Faculty of Engineering Structural Engineering Department

Composite Steel-Concrete Beams With Corrugated Steel Webs

By **Hosny Fathallah Hosny Ibrahim Alqattan**

> B.Sc. Structural Engineering Ain Shams University

A Thesis

Submitted in Partial Fulfilment for the Requirements
of the Degree of Master of Science
in Civil Engineering (Structural)

Supervised by

Prof. Dr. **Ezzeldin Yazeed Sayed-Ahmed**

Prof. Dr. **Ahmed Abdelsalam El-Serwi**

Professor of steel structures & bridges Construction Engineering Department American University in Cairo Professor of steel structures & bridges Structural Engineering Department Ain Shams University

Dr. **Amr Abdel Salam Shaat**

Associate Professor Structural Engineering department Ain Shams University

© Cairo - 2018

EXAMINERS COMMITTEE

Prof. Dr. Osama Mohamed Alhosseny	()
Professor of steel structures & bridges Structural Engineering department Faculty of Engineering Zagazig University	
Prof. Dr. Abdelrahim Khalil Dessouki	()
Professor of steel structures & bridges Structural Engineering department Faculty of Engineering Ain Shams University	
Prof. Dr. Ezzeldin Yazeed Sayed-Ahmed	()
Professor of steel structures & bridges Construction Engineering department Faculty of Engineering American University in Cairo	

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

STRUCTURAL ENGINEERING DEPARTMENT

Thesis submitted by: Hosny Fathallah Hosny Ibrahim Alqattan. Thesis title: Composite Steel-Concrete Beams With Corrugated **Steel Webs Supervisors:** (.....) Prof. Dr. Ezzeldin Yazeed Sayed-Ahmed Professor of steel structures & bridges Construction Engineering department Faculty of Engineering American University in Cairo Prof. Dr. Ahmed Abdelsalam El-Serwi (.....) Professor of steel structures & bridges Structural Engineering department Faculty of Engineering Ain Shams University (.....) Dr. Amr Abdel Salam Shaat Associate professor Structural Engineering department Faculty of Engineering Ain Shams University

Registration date:

Examination date:

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Structural Engineering.

The work included in this thesis has been carried out by the author in the department of Structural Engineering, Ain Shams University, from June 2015 to April 2018.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name	: Hosny Fathallah Hosny Ibrahim Alqattan

Signature:

Date : / /

ACKNOWLEDGMENTS

First and foremost, I thank God through whom all things are possible.

I would like to express my deepest gratitude and appreciation to my supervisors, Prof. Ezzeldin Yazeed, Prof. Ahmed Abdelsalam and Dr. Amr Shaat, for their help, guidance, technical and moral support provided throughout all the phases of this research project. I would like to thank their help, which covered not only the professional help, but also personal advices. In addition, I appreciate their care to introduce this research in a way to match the international standards.

I think this research would have not been completed without the continuous support from my family. I would like to thank my father, Fathallah, and my mother, Samira, for their continuous encouragement, on-going love, sacrifice, care, and support over the course of my lifetime. I would like to thank my brother, Ahmed, and my sister, Shaimaa, for their help in all the stages of this research, unconditional support, and on-going encouragement. Thank you for believing in me, and standing by my side for every step of the way.

I would also like to recognize and thank my spouse, Salsabeel, my partner in all successful things I am achieving, for her support during long nights of work that kept me motivated to do my best, for limitless believing in me and for encouraging me to complete this work.

I would like to express my appreciation to Dr. Mahmoud Ramzy for his technical support and for the fruitful negotiations about every single phase of this research project. Special thanks to my friend, Eng. Abderhman Hesham, for his technical advices and support to execute the presented research.

ABSTRACT

Corrugated steel web beams are widely used in structural engineering applications, and are sometimes more preferred than the flat web steel beams especially in the slender web, due to their aesthetic appearance and high strength-to-weight ratio. In many cases, the maximum capacity of such beam is governed by the geometry of the corrugation profile. Merging a composite action with the accordion effect in one beam is considered as a modern technique of construction.

This research program investigates new composite steel-concrete beams with corrugated steel web. The research focused on composite beams of zigzag-corrugated web subjected to two-point loading flexure test simply supported.

The study includes a numerical model using finite element analysis, the model was verified against experimental results. FEM was carried out to investigate the behaviour of composite steel-concrete beams with corrugated web including local & global behaviours, and to examine a wide range of parameters such as the corrugation angle, corrugated web depth, panel width and thickness, in addition to concrete slab width. Results are presented in terms of load-deflection, load-concrete strain, load-steel strain plots and deformed shapes of girders at ultimate loads. The finite element model also investigates the effect of the corrugated web geometry on the strength, stiffness, and ductility. It was found that corrugated steel web enhances the efficiency of the composite steel-concrete beams.

Based on the research outcome, combining composite action with accordion effect is proven numerically to be an effective structure design technique. Panel width and corrugation angle affect largely on the buckling strength, stiffness, and ductility of beams. Effect of panel width on strength is cleared more in case of slender web.

A high buckling resistance could be reached at angles larger than 25° and at 60° the buckling could be prevented. From the analysis of the effect of corrugation on the ductility and stiffness, beams with corrugation angles range from 25° to 60° achieve maximum ductility and minimum rate of stiffness reduction. Larger corrugation width and depth, in view of bigger plate slenderness, has been observed to result in a drop in ultimate shear strength. It is, therefore, necessary to arrive at optimum values for the corrugation width and depth in order to achieve an efficient design. The study revealed also guidelines for the choice of the corrugated web geometry limited to the studied parameters. Effective concrete width is highly influenced by corrugation profile of the web.

TABLE OF CONTENTS

STATEMENT	i
ACKNOWLEDGMENTS	ii
ABSTRACT	iii
TABLE OF CONTENTS	V
LIST OF FIGURES	X
LIST OF TABLES	xvii
NOTATIONS	xviii
ABBREVIATION	xxi
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. Objectives of the research	3
1.2. Objectives of the research.1.3. Thesis outline.	
	4
1.3. Thesis outline	10
1.3. Thesis outline CHAPTER 2: STATE-OF-THE-ART REVIEW	10
1.3. Thesis outline CHAPTER 2: STATE-OF-THE-ART REVIEW 2.1. Introduction	10
1.3. Thesis outline CHAPTER 2: STATE-OF-THE-ART REVIEW 2.1. Introduction 2.2. Shear strength	101010
1.3. Thesis outline CHAPTER 2: STATE-OF-THE-ART REVIEW 2.1. Introduction 2.2. Shear strength 2.2.1. Background of buckling and post-buckling.	10101011
1.3. Thesis outline CHAPTER 2: STATE-OF-THE-ART REVIEW 2.1. Introduction 2.2. Shear strength 2.2.1. Background of buckling and post-buckling. 2.2.2. Shear yielding	
1.3. Thesis outline	
1.3. Thesis outline	

2.4. Strength under combined flexure and shear	21
2.5. Fabrication of corrugated web beam	23
2.6. SCC beams with corrugated steel web	24
2.6.1. Composite action background	24
2.6.2. Degree of shear connection	25
2.6.3. Techniques of shear connection	26
2.7. Merits of SCC beams with corrugated web	28
2.8. Recent research in SCC with corrugated web	30
CHAPTER 3: NUMERICAL MODEL	40
3.1. Introduction	40
3.2. Choice of finite element type and mesh	41
3.2.1. Concrete slab and reinforcement rebar	42
3.2.2. Steel beam, shear connectors and bearing stiffeners	42
3.3. Material constitutive model	43
3.3.1. Steel material model	44
3.3.2. Concrete material model	45
3.4. Interaction model	49
3.4.1. Concrete-shear connector contact	49
3.4.2. Concrete-steel contact	50
3.4.3. Concrete-reinforcement bars interface	50
3.4.4. Welded regions	50
3.5. Loading and boundary conditions	51
3.6. Analysis type and solution control	51
3.7. Approximations and limitations	50

3.8. Verification of finite element model	33
3.8.1. Validation plan strategy	53
3.8.2. Selected experimental work	54
3.8.3. Strength of beams validation	57
3.8.4. Elastic stiffness of beams validation	57
3.8.5. Deformed shape validation	57
3.8.6. Load-deflection validation	58
3.8.7. Compressive strain validation	60
3.8.8. Tensile strain validation	60
3.8.9. Slippage value validation	61
	61
3.9. Conclusions	
3.9. Conclusions	
	89
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH	
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS	89
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS	89 89
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS 4.1. Introduction 4.2. The adopted finite element model	89 89
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS 4.1. Introduction 4.2. The adopted finite element model 4.3. Parametric study plan	89 90
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS 4.1. Introduction 4.2. The adopted finite element model 4.3. Parametric study plan 4.3.1. Grouping of models	
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS 4.1. Introduction 4.2. The adopted finite element model 4.3. Parametric study plan 4.3.1. Grouping of models 4.3.2. Studied parameters	
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS 4.1. Introduction 4.2. The adopted finite element model 4.3. Parametric study plan 4.3.1. Grouping of models 4.3.2. Studied parameters 4.4. Results of parametric study	
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS 4.1. Introduction 4.2. The adopted finite element model 4.3. Parametric study plan 4.3.1. Grouping of models 4.3.2. Studied parameters 4.4. Results of parametric study 4.4.1. Failure modes	
CHAPTER 4: BEHAVIOUR OF COMPOSITE BEAMS WITH CORRUGATED STEEL WEBS 4.1. Introduction 4.2. The adopted finite element model 4.3. Parametric study plan 4.3.1. Grouping of models 4.3.2. Studied parameters 4.4. Results of parametric study 4.4.1. Failure modes 4.4.2. Load-deflection behaviour	

4.5. Panel width effect (b)	99
4.5.1. Strength of beams	100
4.5.2. Elastic stiffness	103
4.5.3. Ductility of beams	104
4.6. Corrugation angle effect (α)	107
4.6.1. Strength of beams	108
4.6.2. Elastic stiffness	109
4.6.3. Ductility of beams	110
4.6.4. Corrugation angle-web thickness relationship	110
4.7. Panel aspect ratio effect (d/b)	111
4.7.1. Strength of beams	111
4.7.2. Elastic stiffness	112
4.8. Panel depth to thickness effect (d/t)	113
4.9. Corrugation height to corrugation length ratio effect (h/l)	114
4.10. Corrugation height to web thickness ratio effect (h/t)	115
4.11. Design recommendations	116
4.12. Effect of loading position	117
4.13. Concrete slab width effect	118
4.14. Effective concrete slab width evaluation	119
4.15. Trapezoidal versus zigzag corrugation	120
CHAPTER :: SUMMARY AND CONCLUSIONS	174
5.1. Overview	174
5.2. General conclusions	175
5.3. Recommendations for future work	177

LIST OF REFERENCES	178
APPENDIX-A	185

LIST OF FIGURES

Figure 1-1 Geometric parameters for (a) trapezoidal & (b) Zigzag	6
Figure 1-2 Broadleaf-tree leaves	7
Figure 1-3 Foldable insect wings	7
Figure 1-4 Seashell	7
Figure 1-5 Corrugated web steel beam	8
Figure 1-6 Oumi-Ohtori bridge, Frame joint (Japan)	9
Figure 1-7 Akabuchigawa bridge (Courtesy of JH and Sumitomo-Mitsui)	
(Germany)	9
Figure 2-1 Thin plate element in pure shear stress	34
Figure 2-2 Tension field action	34
Figure 2-3 Theoretical definition of buckling modes	35
Figure 2-4 Buckling modes in FEM	35
Figure 2-5 Free body diagram of corrugated web	36
Figure 2-6 Fabrication tool for corrugation	37
Figure 2-7 Degree of shear connection	37
Figure 2-8 Corrugated web joint to concrete slab in composite beams	38
Figure 2-9 Concrete dowels shear connection	38
Figure 2-10 Failure modes of dowels	39
Figure 3-1 Types of elements used in structure analysis	64
Figure 3-2 Bilinear stress-strain of steel sections	65
Figure 3-3 Bilinear stress-strain of steel reinforcement	65
Figure 3-4 Compressive behaviour of NWC	66
Figure 3-5 Compressive behaviour of LWC	66
Figure 3-6 Tensile behaviour of NWC	67
Figure 3-7 Tensile behaviour of LWC	67
Figure 3-8 Damage parameters based on the response of concrete to uniaxia	ıl-
loading	68