CHARACTERIZATION OF VARIOUS KINDS OF REFUSED DERIVED FUEL AND THEIR EFFECTS ON CEMENT PROPERITES

Submitted By Hani Mashhout Abd Elhamed Ahmed

B.Sc. of Science (Chemistry/Physics), Faculty of Science, Cairo University, 2001

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

CHARACTERIZATION OF VARIOUS KINDS OF REFUSED ENTDERIVED FUEL AND THEIR EFFECTS ON CEM PROPERITES

Submitted By

Hani Mashhout Abd Elhamed Ahmed

B.Sc. of Science (Chemistry/Physics) Faculty of Science, Cairo University, 2001

A thesis submitted in Partial Fulfillment

Of The Requirement for the Master Degree

In Environmental Sciences

Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Sciences

Has been approved by:

Name Signature

1-Prof. Dr. Eissa El Sayed Hekal

Prof. of Physical Chemistry and Building Materials

Faculty of Science - Ain Shams University

2-Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Analytical and Inorganic Chemistry

Faculty of Science - Ain Shams University

3-Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Prof. of Environmental Chemistry, Vice Dean of Institute of Environmental Studies & Research for Environment & Community Affairs- Ain Shams University

4-Prof. Dr. Fayza Sayed Mohamed Hashem

Prof. of Physical Chemistry and Building Materials

Faculty of Science - Ain Shams University

2018

CHARACTERIZATION OF VARIOUS KINDS OF REFUSED DERIVED FUEL AND THEIR EFFECTS ON CEMENT PROPERITES

Submitted By

Hani Mashhout Abd Elhamed Ahmed

B.Sc. of Science (Chemistry/Physics), Faculty of Science, Cairo University, 2001

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Science

Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Taha Abd El Azzem Mohamed Abd El-Razek

Prof. of Environmental Chemistry, Head of Department of Environmental

Basic Sciences - Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Fayza Sayed Mohamed Hashem

Prof. of Physical Chemistry and Building Materials Faculty of Science Ain Shams University

2018

سورة البقرة الآية: ٣٢

ACKNOLEDGMENT

First and forever all thanks for *ALLAH* who gives me the ability and grant to accomplish this work.

I would express all my thanks, appreciation and gratitude to **Prof. Dr.Taha Abdulazim Mohamed Abdelrazek** Professor of Environmental Chemistry- Institute of Environmental Studies and Research, Ain Shams University for his endless support and guidance all the time.

I would express all my thanks, appreciation and gratitude to **Prof. Dr. Fayza Sayed Mohamed Hashem** Professor of physical chemistry and building materials, Faculty of Science, Ain Sham University for her endless support and guidance all the time

My sincere love and loyalty to my family, my father and my mother for their prayers for me, and my beloved wife for her encouragement all the time

Hani Mashhout Abdelhamed Ahmed

Cairo- 2018

Abstract

Recently, there is an increasing demand for using refused derived fuels (RDF) as replacement for traditional fossil fuel in energy intensive industries like cement industry. However, using such sources will affect the properties and quality of the produced cement since RDF ash was mixed with OPC clinker during production. In the present study, eight solid refused derived fuels namely; rubber waste, tree trimmings, rice straw, municipal solid wastes, paper waste, saw dust, cane waste and plastic waste, are characterized and tested as RDF. Also, the effect of their ash on the setting and hardening of the hardened OPC pastes was investigated. Results showed that plastic waste has the highest calorific values followed by rubber waste. OPC pastes mixed with RDF ash showed reduced setting times. Besides, OPC admixed with rubber wastes ash offered the highest compressive strength values between all the studied RDF sources. Phase composition of the formed hydrates is studied by X-ray diffraction analysis and results showed that the ash within OPC matrix does not change the hydration mechanisms since the same hydration products are formed.

<u>Keywords</u>: Portland cement, Reused drive fuels, rubber Waste, MSW, Energy

List of Contents

Serial	Title	Page
1	Abstract	i
2	List of content	ii
3	List of Abbreviation	ix
4	List of tables	xiv
5	List of figures	xvi
6	Chapter (I) Introduction	1
7	INTRUDUCTION	1
8	Chapter (2) Literature Review	3
9	2.1. Cement Industry	3
10	2.2. Green House Gas performance of fuels	4
11	2.3. Refused Derived Fuel	4
12	2.4. The common rules have to be followed for utilizing RDF	6
13	2.5. RDF Classifications	8
14	2.6. Richness of RDF	9
15	2.6.1. Heating Value	9
16	2.6.2. Moisture Content	10

Serial	Title	Page
17	2.7. RDF and CO2 reduction	11
18	2.8. Sources of RDF	13
19	2.8.1. Agricultural biomass	13
20	2.8.2. Municipal Solid Waste	14
21	2.8.3. Sewage Sludge	15
22	2.8.4. EF type	16
23	2.9. Co-processing: a part of the solution	16
24	2.10. Production of Waste Recovered Fuels (RDF)	18
25	2.11. Handling Properties of RDF	24
26	2.12. Result of RDF on Clinker Chemistry	25
27	2.13. Storage, Dosing and Feeding of RDF	28
28	2.13.1. Storage	28
29	2.13.1.1. Initial Storage	29
30	2.13.1.2. Intermediate Storage	30
31	2.13.1.3. Finished Material Storage	30
32	2.13.2. Dosing and Feeding	31
33	2.14. Advantages of using waste derived fuels	31

Serial	Title	Page
34	2.14.1. Ecological advantages	31
34	2.14.2. Economic and Social Advantages	32
35	2.15. Environmental impacts	33
36	2.16. Ordinary Portland Cement	35
37	2.16. 1. Cement Production Method	35
38	2.16.1.1. Crushing and Proportioning	36
39	2.16.1. 2.Raw milling & Blending	36
40	2.16.1. 3.Pyro processing	36
41	2.16.1.4. Burning and cooling	37
42	2.16.1.5. Cement milling, Storage & Packing	37
43	2.16.2. Clinker Phases	38
44	2.17. Particulate Emissions from Production Process	39
45	2.18. Sulfur Oxide Emissions from Clinker production	41
46	2.19. Nitrogen Oxide Emissions from Clinker production	42
47	2.20. Carbon Dioxide Emissions from Clinker	43

Serial	Title	Page
	production	
48	2.20.1. CO2 Emissions from Calcination	43
49	2.20.2. CO2 Emissions from Combustion	44
50	2.21. Health Effects	45
51	2.21.1. Skin contact	45
52	2.21.1.1. Dermatitis	45
53	2.21.1.2. Allergic dermatitis	46
54	2.21.1.3. Cement Burns	46
55	2.21.2. Inhalation of dust	47
56	2.21.3. Manual Handling	47
57	2.22. Enhanced usage of A.F in Cement manufacturing	47
58	2.23 .Effects of RDF ash on the performance of cement	48
59	2.24. Objective of Investigation	50
60	Chapter (3) Materials and Methods	52
59	3.1. Starting Materials	52
	3.2.Methods	54

Serial	Title	Page
60	3.2.1.Charcterization of Dry RDF	54
61	3.2.1.1Percentage of Moisture Contents (MC)	54
62	3.2.1.2. Percentage of Ash Contents (ASH)	55
63	3.2.1.3.Density determination	55
64	3.2.1.4.Calorific value (C.V) determination	55
65	3.2.1.5.C, H, N, S and Cl contents	56
66	3.2.2. Preparation of the Mixes	56
67	3.2.2.1.Dry Mixes	56
68	3.2.2.1.Specimens Preparation, Curing and testing	58
69	3.2.3. Methods of Physicochemical Measurements	59
70	3.2.3.1. Water of consistency and setting time measurements	59
71	3.2.3.2Compressive strength determination	59
72	3.2.3.3.Kinetics of hydration	60
73	3.2.3.3.1. Determination of chemically combined water content (Wn, %)	60
74	3.2.3.3.2. Determination of the free lime content (CaO, %)	60

Serial	Title	Page
75	3.2.4. X-ray diffraction analysis (XRD)	62
76	Chapter (4) Results and discussion	63
77	4.1. Physicochemical Characteristics of High Ash Contents Refused Derived Fuels (RDF)	63
78	4.1.1. Characterization of RDF	63
79	4.1.2.Effect of RDF Ash on Ordinary Portland Cement Clinker Composition	67
80	4.1.3.Effect of RDF Ash on Hydration Characteristics of OPC Hardened pastes	68
81	4.1.3.a. Setting times	69
82	4.1.3.b. Compressive strength of OPC specimens	73
83	4.1.3.c. Hydration kinetics	78
84	4.1.3. c.1. Chemically combined water (Wn, %)	78
85	4. 1 .3.c.2.free lime content (CaO, %)	81
86	4.1.3.d.Phase Composition	84
87	4.2. Physicochemical Characteristics of Low Ash Contents Refused Derived Fuels (RDF)	86
88	4.2.1. Characterization of RDF	87
89	4.2.2. Effect of RDF Ash on Ordinary Portland	90

Serial	Title	Page
	Clinker Composition	
90	4.2.3.Effect of RDF Ash on Hydration Characteristics of OPC hardened pastes	92
91	4.2.3.a. Setting times	92
92	4.2.3.b. Compressive strength of OPC specimens	96
93	4.2.3.c. Hydration kinetics	100
94	4.2.3. c. 1.Chemically combined water (Wn, %)	100
95	4.2.3. c. 2.Free lime content (CaO, %)	103
96	4.2.3.d.Phase Composition	106
97	Chapter (4) Summary and Conclusion	109
98	References	115
99	Arabic Summary	1

List of Abbreviation

Symbol	Description
AF	Alternative Fuel
AFR	Alternative Fuels and Raw Materials
C.V	Calorific value
C2S	Dicalcium silicates
СЗА	Tricalcium aluminates
C3S	Tricalcium silicates
C4AF	Tetra calcium aluminate ferrate
CKD	cement kiln dust
CO_2	Carbon Dioxide
CSH	Calcium Silicates Hydrates
CW	Cane waste
EF	Engineered Fuel
ESPs	Electrostatic precipitator
G J	Giga Joule
GHG	Green House Gas
HARDF	High ASH content RDF
LARDF	Low ASH content RDF

Symbol	Description
LHV	lower heating values
LOI	Loss On Ignition
MBT	mechanical biological treatment
MC	Moisture Contents
MSW	Municipal Solid WASTE
MSW	municipal solid waste
MT-plant	mechanical treatment plant
NCV	net calorific value
NOx	nitrogen oxides
OPC	Ordinary Portland cement
P _A W	Paper waste
PCBs	polychlorinated biphenyls
PDF	Packaging derived Fuel
P_LW	Plastic waste
RDF	Refused Derived Fuel
REF	Recovered Fuel
RHA	Rice Husk Ash
RS	Rice straw