

EMPIRICAL MODEL FOR CURING CONDITIONS SELECTION LEADING TO THE OPTIMUM PROPERTIES OF CFRP

By

Ahmed Hatem Omar Abdel-Aziz Al-Khoribi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in Metallurgical Engineering

EMPIRICAL MODEL FOR CURING CONDITIONS SELECTION LEADING TO THE OPTIMUM PROPERTIES OF CFRP

By

Ahmed Hatem Omar Abdel-Aziz Al-Khoribi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in Metallurgical Engineering

EMPIRICAL MODEL FOR CURING CONDITIONS SELECTION LEADING TO THE OPTIMUM PROPERTIES OF CFRP

By

Ahmed Hatem Omar Abdel-Aziz Al-Khoribi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in Metallurgical Engineering

Under the Supervision of

Prof. Dr. Nahed Ahmed Abdel-Raheem

Mining, Petroleum, and Metallurgy Department Faculty of Engineering - Cairo University

Prof. Dr. Sawsan Fakhry Halim

National Institute of Standards (NIS)

EMPIRICAL MODEL FOR CURING CONDITIONS SELECTION LEADING TO THE OPTIMUM PROPERTIES OF CFRP

By

Ahmed Hatem Omar Abdel-Aziz Al-Khoribi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in Metallurgical Engineering

Approved by the Examining Committee

Prof. Dr. Nahed Ahmed Abdel-Raheem	(Thesis Main Advisor)
Prof. Dr. Sawsan Fakhry Halim (National Institute of Standards)	(Advisor)
Prof. Dr. Mohamed Raafat El-Koussy	(Internal Examiner)
Prof. Dr. Samir Naguib Lawandy (National Institute of Standards)	(External Examiner)

Engineer: Ahmed Hatem Omar Abdel-Aziz Al-Khoribi

Date of Birth: 4 / 5 /1990 **Nationality:** Egyptian

E-mail: ahmedhatem19@gmail.com

Phone: 01066549404

Address: 33 Abo El-Feda Street

Registration Date: 1 / 3 / 2015 **Awarding Date:** 2019

Degree: DOCTOR OF PHILOSOPHY

Department: Mining, Petroleum, and Metallurgy Department

Supervisors:

Prof. Dr. Nahed Ahmed Abdel-Raheem (Thesis Main Advisor)

Prof. Dr. Sawsan Fakhry Halim (Advisor)

(National Institute of Standards)

Examiners:

Prof. Dr. Nahed Ahmed Abdel-Raheem (Thesis Main Advisor)

Prof. Dr. Sawsan Fakhry Halim (Advisor)

Prof. Dr. Mohamed Raafat El-Koussy
Prof. Dr. Samir Naguib Lawandy

(Internal Examiner)
(External Examiner)

(National Institute of Standards)

Title of Thesis:

Empirical Model for Curing Conditions Selection Leading to the Optimum Properties of CFRP

Key Words:

Epoxy, carbon fiber, polymer, mechanical properties, thermal properties

Summary:

In this thesis, an attempt has been made to optimize the curing process of carbon fiber reinforced polymer laminates by selecting the optimum curing conditions that led to optimum properties of CFRP materials. The studied properties were mechanical, thermal, and physical properties. It was shown that curing at 180 °C or lower, applying furnace cooling, raising resin-to-hardener ratio, and avoiding wetting the bottom side have reduced data variability, lowered thickness, and residual stress. Also, it was shown that curing at 115 min/105 °C has improved overall mechanical properties while curing at 125 min/130 °C has improved overall thermal properties.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Ahmed Hatem Omar	Date:
Signatu	re:	

To:

my father, my mother, and my sister my nieces, Lena and Tala

Acknowledgement

I would like to express my deepest appreciation to my main supervisor Prof. Dr. Nahed Ahmed Abdel-Raheem who has guided me through my research journey and has exerted tremendous efforts in order to improve this thesis.

I would like to thank deeply my second supervisor Prof. Dr. Sawsan Fakhry Halim for her significant and sincere contribution in my thesis. Without her supervision and continuous help, this thesis would not have been possible.

I would like to express my deepest appreciation to the Mechanical Testing Laboratory in MPM Department – Faculty of Engineering – Cairo University for helping me performing much of my work. I would like to especially thank Mr. Mohamed Mamdooh for assisting me when I was conducting tensile and compressive tests.

I would like to thank National Research Centre (NRC) for helping me performing thermal analysis tests. I would like to especially thank Mr. Mahmood Al-Ashri for assisting me when I was conducting thermomechanical analysis.

I would like to thank National Institute of Standards (NIS) for helping me performing thermal analysis tests. I would like to especially thank Mr. Osama for assisting me when I was conducting thermogravimetric analysis. I also would like to especially thank Dr. Soma for assisting me when I was conducting dynamic mechanical analysis.

I also place on record my sense of gratitude to one and all who, directly or indirectly, have lent their helping hand in this thesis.

Contents

Disclaimer	1
Dedication	ii
Acknowledgement	iii
List of Tables	v
List of Figures	viii
List of Symbols	xii
List of Abbreviations	xv
Abstract	xvii
Chapter 1 Literature Review	1
1.1 Introduction	1
1.2 Applications of FRPs	4
1.3 Advantages of FRPs	8
1.4 Disadvantages of FRPs	9
1.5 Components of FRPs	9
1.6 Properties of FRPs	33
1.7 Stress analysis of FRPs	42
Chapter 2 Methodology	51
2.1 Introduction	51
2.2 First design route	52
2.3 Second design route	55
Chapter 3 Results and Discussion	67
3.1 Introduction	67
3.2 First design route optimization procedure	68
3.3 Second design route optimization procedure	79
Conclusions	218
References	219

List of Tables

Table 2.1 Specimens abbreviations and the corresponding curing conditions	54
Table 2.2 Coded and actual values of factors as well as actual run order of testing	59
Table 3.1 Hardness testing results	68
Table 3.2 One-way ANOVA results of hardness	69
Table 3.3 Four-way ANOVA results of hardness	70
Table 3.4 Thickness measuring results	72
Table 3.5 One-way ANOVA results of thickness	72
Table 3.6 Four-way ANOVA results of thickness	72
Table 3.7 Fisher LSD method results for comparing all pairs of factor level fitted means of curing temperature, cooling method, wetting method, and resin-to-hardener ratio factors using $\alpha = 0.05$	73
Table 3.8 Residual stresses measuring results	77
Table 3.9 Validation results of the optimization procedure	79
Table 3.10 Minitab output	87
Table 3.11 Minitab output	88
Table 3.12 Minitab output	90
Table 3.13 Minitab output	91
Table 3.14 Minitab output	92
Table 3.15 Minitab output	93
Table 3.16 Minitab output	94
Table 3.17 Minitab output	96
Table 3.18 Minitab output	98
Table 3.19 Minitab output	100
Table 3.20 Minitab output	103
Table 3.21 Highest UTS fitted values	104
Table 3.22 Minitab output	112
Table 3.23 Minitab output	114
Table 3.24 Minitab output	116
Table 3.25 Minitab output	117
Table 3.26 Minitab output	119
Table 3.27 Minitab output	121

Table 3.28 Minitab output	125
Table 3.29 Highest UCS fitted values	126
Table 3.30 Lamina tensile longitudinal and transverse moduli as well as major and minor Poisson's ratios results	139
Table 3.31 L1 tensile results	140
Table 3.32 L2 tensile results	140
Table 3.33 Constituents tensile results	141
Table 3.34 Laminate tensile results	141
Table 3.35 Corrected tensile results	142
Table 3.36 Laminate compressive results	146
Table 3.37 Lamina compressive longitudinal and transverse moduli results	146
Table 3.38 L1 and L2 compressive results	147
Table 3.39 Constituents compressive results	147
Table 3.40 Shear engineering constants results	149
Table 3.41 Minitab output	165
Table 3.42 Minitab output	166
Table 3.43 Minitab output	167
Table 3.44 Minitab output	169
Table 3.45 Minitab output	171
Table 3.46 Minitab output	172
Table 3.47 Minitab output	174
Table 3.48 Highest MST fitted values	176
Table 3.49 Minitab output	184
Table 3.50 Minitab output	186
Table 3.51 Minitab output	187
Table 3.52 Minitab output	189
Table 3.53 Minitab output	191
Table 3.54 Minitab output	196
Table 3.47 Minitab output	174
Table 3.55 Lowest mass loss % fitted values	197
Table 3.56 Minitab output	204
Table 3.57 Minitab output	206
Table 3.58 Minitab output	207

Table 3.59 Minitab output	208
Table 3.60 Minitab output	210
Table 3.61 Minitab output	212
Table 3.62 Highest Tg fitted values	214
Table 3.63 Summary of empirical models	215
Table 3.64 Summary of models adequacy checking results	216

List of Figures

Figure 1.1 Deterioration of reinforced concrete columns due to corrosion	3
Figure 1.2 Externally bonded FRP used in concrete repairing	4
Figure 1.3 Externally bonded FRP used to provide bend flexural strengthening to a bridge pier	5
Figure 1.4 Bridge deck reinforced with FRP bars	5
Figure 1.5 Stealth aircraft made of carbon fiber	6
Figure 1.6 Natural gas pipe line	6
Figure 1.7 Glass fiber reinforced polymer composite blade	7
Figure 1.8 FRP composite shelter for blast protection	7
Figure 1.9 FRP Marine deck	8
Figure 1.10 Various forms of bundle: a) smooth bundle, b) interlaced bundle, and c) tangled bundle	12
Figure 1.11 Examples of fabrics: a) plain fabric, b) oblique fabric, c), satin fabric, d) smooth unidirectional fabric, e) mat fabric, and f) interlaced fabric	14
Figure 1.12 Arrangement of carbon atoms in a graphite crystal	16
Figure 1.13 Structure of carbon fiber	17
Figure 1.14 Arrangement of graphite crystals in a direction transverse to the fiber axis: (a) circumferential, (b) radial, (c) random, (d) radial-circumferential, and (e) random-circumferential	17
Figure 1.15 The processes for making carbon fibers from PAN and pitch precursors	19
Figure 1.16 Plain fabric of carbon fibers	19
Figure 1.17 Manufacturing process of glass fiber	21
Figure 1.18 Glass fibers woven roving	22
Figure 1.19 Plain fabrics of aramid fibers	23
Figure 1.20 Structural formula of a basic epoxy molecule with two epoxy groups at two ends	26
Figure 1.21 A glass container containing polyester resin	28
Figure 1.22 FRP composite components	32
Figure 1.23 Unidirectional (left-side) and quasi-isotropic (right-side) laminates	33
Figure 1.24 Stress-strain curves of FRP composite and its components	37
Figure 1.25 Unidirectional orthotropic lamina with principal material coordinates (1-2-3 coordinate axes)	47
Figure 2.1 Release film laid over mold surface	53

Figure 2.2 Four boundaries at which hardness testing and thickness measurements	
were conducted	54
Figure 2.3 Central composite design for second design route	57
Figure 2.4 Release film fixed by gum tape	58
Figure 2.5 Typical tensile specimen	60
Figure 2.6 Supporting jig used in compressive test	61
Figure 2.7 Typical compressive specimen	61
Figure 2.8 Typical TMA specimen	62
Figure 2.9 Typical DMA specimen	64
Figure 3.1 Box plot of specimens' hardness observations	69
Figure 3.2 Main effects plot of factor level fitted mean hardness values vs. factor levels	71
Figure 3.3 Box plot of specimens' thickness observations	73
Figure 3.4 Main effects plot of factor level fitted mean thickness values vs. factor levels	74
Figure 3.5 Schematic showing a bending composite	77
Figure 3.6 Scatter plot of mean residual stresses vs. mean thickness values	78
Figure 3.7 Mean UTS vs. curing temperature values at constant curing time = 90 min	82
Figure 3.8 Post-failure image of specimen (90 min, 95 °C)	82
Figure 3.9 Mean UTS vs. curing time values at constant curing temperature = 130 °C	83
Figure 3.10 Post-failure image of specimen (55 min, 130 °C)	83
Figure 3.11 Post-failure image of specimen (125 min, 130 °C)	84
Figure 3.12 Two-factor interaction between curing temperature and curing time	85
Figure 3.13 Two-factor interaction between curing time and curing temperature	85
Figure 3.14 Contour plot of mean UTS as a function of curing time and curing temperature	86
Figure 3.15 Normal probability plot of residuals for the ordinary model	10
Figure 3.16 Plot of the residuals vs. fitted values for the ordinary model	10
Figure 3.17 Normal probability plot of residuals for the weighted model	102
Figure 3.18 Plot of the residuals vs. fitted values for the weighted model	102
Figure 3.19 Surface plot of UTS fitted values vs. curing time (A) and curing temperature (B)	104
Figure 3.20 Mean UCS vs. curing temperature values at constant curing time = 90 min	106
Figure 3.21 Post-failure image of specimen (90 min, 95 °C)	107
Figure 3.22 Post-failure image of specimen (90 min, 165 °C)	107
Figure 3.23 Mean UCS vs. curing time values at constant curing temperature = 130 °C	108

Figure 3.24 Post-failure image of specimen (55 min, 130 °C)	108
Figure 3.25 Two-factor interaction between curing temperature and curing time	110
Figure 3.26 Two-factor interaction between curing time and curing temperature	110
Figure 3.27 Contour plot of mean UCS as a function of curing time and curing temperature	111
Figure 3.28 Normal probability plot of residuals for the ordinary model	123
Figure 3.29 Plot of the residuals vs. fitted values for the ordinary model	123
Figure 3.30 Normal probability plot of residuals for the weighted model	124
Figure 3.31 Plot of the residuals vs. fitted values for the weighted model	124
Figure 3.32 Surface plot of UCS fitted values vs. curing time (<i>A</i>) and curing temperature (<i>B</i>)	126
Figure 3.33 RVE for proposed micromechanical model	130
Figure 3.34 Schematic showing the average (effective) fiber area	130
Figure 3.35 Schematic showing undeformed and deformed laminate: (a) undeformed laminate and (b) deformed laminate	133
Figure 3.36 Typical tensile stress-strain curve of CFRP composites	133
Figure 3.37 Typical thermal strain-temperature curve of a CFRP composite material	151
Figure 3.38 Mean CTE vs. curing temperature values at constant curing time = 90 min	152
Figure 3.39 Mean CTE vs. curing time values at constant curing temperature = 130 °C	153
Figure 3.40 Two-factor interaction between curing temperature and curing time	154
Figure 3.41 Two-factor interaction between curing time and curing temperature	154
Figure 3.42 Contour plot of mean CTE (matrix-dominated) as a function of curing time and curing temperature	155
Figure 3.43 Mean CTE vs. curing temperature values at constant curing time = 90 min	157
Figure 3.44 Mean CTE vs. curing time values at constant curing temperature = 130 °C	157
Figure 3.45 Two-factor interaction between curing temperature and curing time	158
Figure 3.46 Two-factor interaction between curing time and curing temperature	159
Figure 3.47 Contour plot of mean CTE (fiber-dominated) as a function of curing time and curing temperature	160
Figure 3.48 Mean MST vs. curing temperature values at constant curing time = 90 min	161
Figure 3.49 Mean MST vs. curing time values at constant curing temperature = 130 °C	162
Figure 3.50 Two-factor interaction between curing temperature and curing time	163
Figure 3.51 Two-factor interaction between curing time and curing temperature	163