



# Identification of Bagasse degrading gene(s) in cellulolytic micro-organisms

#### Thesis

Submitted for Partial Fulfilment of Master Degree in Microbiology

#### By

### Mustafa Fathy Mustafa El-Bakary

B.Sc. (Microbiology, 2010)
Researching Assistant
Agricultural Genetic Engineering Research Institute (AGERI)
Agricultural Research Center (ARC)

#### **Supervisors**

### Dr. Khaled Zakaria El Baghdady

Associate Professor of Microbiology Microbiology Department, Faculty of Science Ain Shams University

#### Dr. Amr Mohamed Ageez

Associate Professor of Molecular Biology Agricultural Genetic Engineering Research Institute (AGERI) Agricultural Research Center (ARC)

> Microbiology Department Faculty of Science Ain Shams University 2019





### **Approval Sheet**

Name: Mustafa Fathy Mustafa El-Bakary

Title: Identification of Bagasse degrading gene(s) in

cellulolytic micro-organisms

#### **Super visors**

#### Dr. Khaled Zakaria El Baghdady

Associate Professor of Microbiology, Microbiology Department Faculty of Science, Ain Shams University.

#### Dr. Amr Mohamed Ageez

Associate Professor of Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC).

### **Examination committee**

#### Prof. Yehia Abd-El Monem Othman

Professor of Microbial Genetics, Botany Department, Faculty of Science, Mansoura University.

#### Prof. Heba Abd-El Monem El-Refaay

Professor of Chemistry of Natural and Microbial Products, National Research Center.

#### Dr. Khaled Zakaria El Baghdady

Associate Professor of Microbiology, Microbiology Department Faculty of Science, Ain Shams University.

#### Dr. Amr Mohamed Ageez

Associate Professor of Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC).

Date 22/ 1/2019 Approval date / /2019

University council approved / /

## **Declaration**

This dissertation has not been previously submitted for any degree at this or at any other university

Mustafa Fathy Mustafa El-Bakary

### Acknowledgements

Firstly, I would like to thank **Allah** for helping me to complete the present thesis.

I do not have the words to express my respectful to **Dr. Khaled Zakaria El Baghdady**, Associate Professor of Microbiology department, Faculty of science, Ain shams university, for his helping, encouragement, cooperation and valuable advices in each step of this thesis. I'm proud to be one of his students.

I am gratefully and sincerely thankful to my dear supervisor Dr. Amr Mohamed Ageez, Associate Professor, Genomics, Proteomics and Bioinformatics Facility, Agricultural genetic engineering institute, Agricultural research center, for his help, continuous support, valuable instructions and providing all requirements for the practical work, guidance from the start of the work. He is always patient and the best supervisor. I'm really proud to be one of his students.

I would like to pay thanks to all staff members of microbiology department, Ain Shams University for their sincere help and support.

A deep thanks to my colleagues, **Dr. Sameh**Haikal, **Dr. Fayrouz Hassan**, **Mr. Akram Hassan**and **Mrs. Abeer Muhamed** in Microbial Genetic
Resources Department, National Gene Bank, Agricultural
research center for their continuous helping.

I can't forget to thank my colleagues, Mrs. Lamis Muhamed and Mrs. Nourhan Fouad, Assistant researchers, Agricultural Genetic Engineering Institute, Agricultural research center, and Mr. Muhammad Farag, Assistant Lecturer, Botany Department, Faculty of Science, Ain Shams University for their helping and encouragement.

My deep appreciation goes to my whole family especially my Dears Mother, Father and sister for their continuous prayers, support and for everything they have done for me.

Finally, very especial thanks to My Wife, Hajar who has stood by me through my study and for her constant support and prayers; till the thesis was completed.

# **List of Contents**

| Subject                                         | Page<br>No. |
|-------------------------------------------------|-------------|
| List of Abbreviation                            | 2 (00       |
| List of tables                                  |             |
| List of figures                                 |             |
| Abstract                                        |             |
| Introduction                                    | 1           |
| Aim of work                                     | 4           |
| 1. Literature Review                            | 5           |
| 1.1 Fossil fuels and their impacts              | 5           |
| 1.2 Agricultural wastes                         | 5           |
| 1.3 Biofuel and agricultural wastes             | 7           |
| 1.4 Sugarcane bagasse (as agricultural waste)   | 9           |
| 1.4.1 Cellulose                                 | 12          |
| 1.4.2 Hemicellulose                             | 14          |
| 1.4.3 Lignin                                    | 15          |
| 1.5 Pretreatment of lignocellulosic materials   | 16          |
| 1.5.1 Physical pretreatment                     | 19          |
| 1.5.2 Chemical pretreatment                     | 20          |
| 1.5.3 Physico-chemical pretreatment             | 22          |
| 1.5.4 Biological pretreatment                   | 23          |
| 1.6 Cellulolytic microorganisms and its role in | 24          |
| degradation of Agricultural wastes              |             |

| 1.6.1 Bacteria                                    | 25 |
|---------------------------------------------------|----|
| 1.6.2 Actinobacteria                              | 26 |
| 1.6.3 Fungi                                       | 27 |
| 1.7 Enzyme sets for Biodegradation of plant       | 28 |
| cellulose                                         |    |
| 1.7.1 Exoglucanases (FPase)                       | 28 |
| 1.7.2 Endoglucanases (CMCase)                     | 29 |
| 1.7.3 β-glucosidases                              | 30 |
| 1.8 Endoglucanase genes in cellulose degrading    | 31 |
| microorganisms                                    |    |
| 2 Materials and Methods                           | 33 |
| 2.1 Materials                                     | 33 |
| 2.1.1 Samples                                     | 33 |
| 2.1.2 Microbial isolates                          | 34 |
| 2.1.3 Culture media                               | 34 |
| 2.1.4 Reagents, buffers and chemicals             | 39 |
| 2.2 Methods                                       | 44 |
| 2.2.1 Samples preparation for microbial isolation | 44 |
| 2.2.2 Preliminary (qualitative) determination of  | 45 |
| cellulase activity for isolated microorganisms    |    |
| 2.2.3 Quantitatively determination of cellulase   | 45 |
| activity of isolated microorganisms               |    |
| 2.2.3.1 Pretreatment of sugarcane bagasse         | 45 |
| 2.2.3.2 Cellulase production from isolated        | 46 |

| cellulolytic microorganisms                           |    |
|-------------------------------------------------------|----|
| 2.2.3.3 Enzymes Assays of isolated cellulolytic       | 46 |
| microorganisms                                        |    |
| 2.2.3.3.1 Exoglucanase assay (FPase assay)            | 47 |
| 2.2.3.3.2 Endoglucanase assay (CMCase assay)          | 48 |
| 2.2.4 Optimization of cultivation conditions of the   | 49 |
| potent isolates                                       |    |
| 2.2.4.1 Optimization of incubating temperature        | 49 |
| 2.2.4.2 Optimization of incubating time               | 50 |
| 2.2.4.3 Induction strength of cellulase production by | 50 |
| different carbon sources                              |    |
| 2.2.5 Genomic DNA extraction of the potent            | 50 |
| isolates                                              |    |
| 2.2.6 Polymerase chain reaction (PCR)                 | 51 |
| 2.2.6.1 16S rRNA gene amplification from the          | 51 |
| potent bacterial and actinobacterial isolates         |    |
| 2.2.6.2 18S rRNA gene and ITS region                  | 52 |
| amplifications from the potent fungal isolate         |    |
| 2.2.6.3 Endoglucanase gene of the potent bacterial    | 52 |
| isolate                                               |    |
| 2.2.6.4 Endoglucanase gene of the potent              | 53 |
| actinobacterial isolate                               |    |
| 2.2.6.5 Endoglucanase gene of the potent fungal       | 53 |
| isolate                                               |    |

| 2.2.7 DNA sequencing                                     | 55 |
|----------------------------------------------------------|----|
| 3.9. Phylogenetic analysis                               | 55 |
| 3 Results                                                | 56 |
| 3.1 Isolation of microorganisms from different           | 56 |
| sources                                                  |    |
| 3.2 Preliminary (qualitative) determination of           | 57 |
| cellulase activity for isolated microorganisms           |    |
| 3.3 Quantitatively determination of cellulase            | 61 |
| activity of isolated microorganisms                      |    |
| 3.3.1 Exoglucanase assay (FPase assay)                   | 61 |
| 3.3.2 Endoglucanase assay (CMCase assay)                 | 64 |
| 3.4 Optimization of growth conditions for                | 68 |
| cellulolytic enzymes production                          |    |
| 3.4.1 Effect of incubating temperature                   | 68 |
| 3.4.2 Effect of incubating time                          | 71 |
| 3.5 Cellulase production using different cellulose       | 74 |
| sources                                                  |    |
| 3.6 Identification of the potent isolates                | 77 |
| 3.7 Phylogenetic trees of identified isolates            | 83 |
| 3.7.1 Phylogenetic tree of PB1 and TA1 isolates          | 83 |
| 3.7.2 Phylogenetic tree of S4 isolate                    | 86 |
| 3.8 Identification of endoglucanase gene                 | 88 |
| 3.8.1 Phylogenatic tree of glu gene from <i>Bacillus</i> | 91 |
| pumilus                                                  |    |

| 3.8.2 Phylogenetic tree of eglS gene of             | 92  |
|-----------------------------------------------------|-----|
| Streptomyces rochei                                 |     |
| 3.8.3 Phylogenetic tree of eglb gene of Aspergillus | 93  |
| flavus                                              |     |
| 5 Discussion                                        | 95  |
| Summary                                             | 102 |
| Conclusion                                          | 104 |
| References                                          | 105 |
| الملخص                                              | 121 |
| المستخلص                                            | 123 |

# **List of Tables**

| Гable<br>No. | Title                                           | Page<br>No. |
|--------------|-------------------------------------------------|-------------|
| 1            | Chemical composition of common                  | 7           |
|              | lignocellulosic residues and wastes             |             |
| 2            | List of fungal species used in the biological   | 24          |
|              | pretreatment of agricultural wastes             |             |
| 3            | Sampling sources                                | 33          |
| 4            | primers list which were used in this study      | 54          |
| 5            | Sources and numbers of selected microbial       | 56          |
|              | isolates                                        |             |
| 6            | Diameter of clear zone of cellulolytic selected | 57          |
|              | microbial isolates                              |             |
| 6            | Exoglucanase (FPase) activities of microbial    | 62          |
|              | isolates grown on SCB as sole carbon source     |             |
| 8            | Endoglucanase (CMCase) activity of microbial    | 64          |
|              | isolates using SCB as sole carbon source        |             |
| 9            | FPase and CMCase activity of the potent         | 67          |
|              | isolates                                        |             |
| 10           | FPase activities during incubating temperature  | 69          |
|              | optimization of the potent isolates             |             |
| 11           | CMCase activities during incubating             | 70          |
|              | temperature optimization of the potent isolates |             |

| 12 | FPase activities at different incubation time | 72 |
|----|-----------------------------------------------|----|
| 13 | CMCase activities during incubating time      | 73 |
|    | optimization of the potent isolates           |    |
| 14 | Comparison of FPase activity between using    | 75 |
|    | SCB versus CMC as sole carbon source          |    |
| 15 | Comparison of CMCase activity between using   | 76 |
|    | SCB versus CMC as sole carbon source          |    |

# **List of Figures**

| Figure | TO LA                                            | Page |
|--------|--------------------------------------------------|------|
| No.    | Title                                            | No.  |
| 1      | Estimated renewable share of total energy        | 6    |
|        | consumption, 2016                                |      |
| 2      | Sugarcane wastes during industrial processes     | 11   |
| 3      | Structure and components of lignocellulose of    | 13   |
|        | agricultural waste                               |      |
| 4      | Diagram shows the structure of crystalline and   | 14   |
|        | amorphous regions of cellulose                   |      |
| 5      | Pretreatment of lignocellulosic materials for    | 16   |
|        | biofuel production                               |      |
| 6      | Steps of cellulose and hemicellulose conversion  | 31   |
|        | into simple sugars                               |      |
| 7      | Standard curve of glucose                        | 41   |
| 8      | Cellulolytic activities of selected microbial    | 60   |
|        | isolates on CMC agar medium. Clear zones         |      |
|        | indicated cellulolytic activities                |      |
| 9      | FPase and CMCase activity of the potent isolates | 67   |
| 10     | FPase activities during incubating temperature   | 69   |
|        | optimization of the potent isolates              |      |
| 11     | CMCase activities during incubating temperature  | 70   |

|    | optimization of the potent isolates            |    |
|----|------------------------------------------------|----|
| 12 | FPase activities during incubating time        | 72 |
|    | optimization of the potent isolates            |    |
| 13 | CMCase activities during incubating time       | 73 |
|    | optimization of the potent isolates            |    |
| 14 | Comparison between FPase activity between      | 75 |
|    | using SCB versus CMC as sole carbon source     |    |
| 15 | Comparison of CMCase activity between using    | 76 |
|    | SCB versus CMC as sole carbon source           |    |
| 16 | PCR amplification of identifying gene          | 78 |
| 17 | Phylogenetic tree of bacterial isolate PB1 and | 85 |
|    | actinobacterial TA1                            |    |
| 18 | Phylogenetic tree of isolate S4 based on 18S   | 87 |
|    | rRNA nucleotide sequence                       |    |
| 19 | Phylogenetic tree of isolate S4 based on ITS   | 88 |
|    | region                                         |    |
| 20 | PCR amplification of Endoglucanase gene of the | 89 |
|    | potent isolates                                |    |
| 21 | Phylogenetic tree based on amino acid sequence | 92 |
|    | of glu gene using MEGA 7                       |    |
| 22 | Phylogenetic tree based on amino acid sequence | 93 |
|    | of eglS gene using MEGA 7                      |    |
| 23 | Phylogenetic tree based on amino acid sequence | 94 |
|    | of eglb gene using MEGA 7                      |    |