سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Cairo University Faculty of Physical Therapy Department of Biomechanics

Mechanical Changes of Patello-Femoral Joint and Locking Mechanism of Knee Joint after Anterior Cruciate Ligament Reconstruction

By

Rafeek Elmamoon Mohamed Ahmed

B. Sc; (1997), PT., Cairo University

Thesis

Submitted to the Department of Biomechanics In Partial Fulfillment for The Requirements Of Master Degree in Physical Therapy.

2004

B

Supervisors

MISIL

Prof. Nahed Ahmed Salem

Professor in the department of Physical Therapy for neuromuscular and neurosurgical disorders, vice dean for Social Services and Environmental Development, Faculty of Physical Therapy,

Cairo University

Prof. Abd Elaziz Elsengergy
Professor of Orthopedic Surgery,

Faculty of Medicine, Cairo University

Prof. Mamdouh Mahfouz

Professor of Radio diagnosis,
Faculty of Medicine, Cairo University

Dedication

I would like to dedicate this work to the spirits of my father and my brother Amr, and to the rest of my family who gave me the greatest support and encouragement throughout my life

Rafeek Radwan

بِسْمِ اللَّهِ الرَّحْمنِ الرَّحِيم

وَأَنْ لَبْسَ لِلْإِنْسَانِ إِلَّا مَا سَعَى ﷺ وَأَنَّ سَعْبَهُ سَوْفَ بِبُرَى ﷺ نُمَّ بِجُزَاهُ الْجَزَاءَ الْأَوْفَى ﷺ

سورة النجم الآيات (٤١.٣٩)

Acknowledgements

First of all I would like to thank the might *God* for his unlimited help he granted me to finish this work

I wish to express my great thanks to *Prof. Nahed Salem*, Professor in P.T department of neuromuscular disorders and its surgery, vice dean for Social Services and Environmental Development, Faculty of Physical Therapy, C airo University for her sincere supervision, C o-operation, and encouragement through conduction of this work.

My deep appreciation and gratitude to *Prof. Abd Elaziz Elsengergy*, Professor in the Department Orthopedic Surgery, Faculty of Medicine, Cairo University for his kind support, guidance and helpful supervision throughout this work

I would like to express my special thanks, great respect to *Prof.*Mamdouh Mahfouz, Professor in the Department of Radio diagnosis,
Faculty of Medicine, Cairo University for acceptance of supervision and
for his guidance and valuable advices

I wish also to express my special appreciation and sincere gratitude to *Prof. Mohamed Fouad Ibrahim Khalil*, Professor and Chairman of the department of Biomechanics, Faculty of Physical Therapy, Cairo University for his great assistance, kind advices and encouragement

I would like to express my great gratitude, special respect to *Dr*. *Ghada EL-Hafez*, lecturer of Biomechanics, Faculty of Physical Therapy, Cairo University for her encouragement, co-operation and sincere help.

My deep thanks to *Dr. Salam EL-Hafez*, lecturer of Biomechanics, Faculty of Physical Therapy, Cairo University for her continuous encouragement, co-operation, and the time she devoted in laboratory analysis of this work.

My great regards and thanks to *Nabil Mahmoud Ismael*, assistant lecturer of Basic Science, Faculty of Physical Therapy, Cairo University for his great help in Statistical analysis

Also I would like to thank *Sayed Satoor*, Physical therapist, New Kasr Aini Hospital and *Sayed Said*, Physical therapist, El-Helal hospital for their help in selection and the referral of the cases

Finally all thanks, great appreciation to all members of my

Small family in the Department of Biomechanics, Faculty of Physical
Therapy, Cairo University for their encouragement, assistance and valuable comments during the conduction of this study

Mechanism of Knee Joint after Anterior Cruciate Ligament Reconstruction, Rafeek E Radwan;, supervisors: Prof. Nahed Salem, Professor in the department of physical therapy for neuromuscular and neurosurgical disorders, vice dean for Social Services and Environmental Development, Faculty of Physical Therapy, Cairo University, Prof. Abd Elaziz Elsengergy, Professor in the Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, Prof. Mamdouh Mahfouz, Professor in the Department of Radio diagnosis, Faculty of Medicine, Cairo University. (Department of Biomechanics, Cairo university, Master degree, 2004)

Abstract: This study was conducted to investigate the mechanical changes of the knee complex after ACL reconstruction using patellar tendon graft within three to eight months after the rehabilitation program. The mechanical changes of the tibiofemoral articulation was investigated by measuring the degree of external rotation of tibia upon femur (locking mechanism) during gait at (0%-2%-30% and 40%) of gait cycle, which is a very important factor in maintaining the stability of the knee joint and achieving the normal gait pattern recorded, using three dimensional motion analysis (Qualysis system). The mechanical changes of the patellofemoral joint was investigated by measuring the sulcus and congruence angles of the injured side compared with normal side by x-ray imaging using "Merchant" technique which is considered to be the best method for obtaining the proper values for these angles, using a specific design for maintain the knee of the patient at 45° of flexion. Thirty male subjects with ACL reconstruction using bone-patellar tendon-bone auto graft were selected to contribute in this study. The statistical analysis investigated that, the subject with reconstructed ACL has a highly significant decrease in the locking mechanism of the involved knee joint during walking compared with the uninvolved side at initial contact (0% and 2%) and early in the terminal stance at 30% of gait cycle. While there was no significant difference in terminal stance at 40 % of gait cycle. This study also showed that there was a highly significant difference between the kinematics of the patellofemoral of the sound and involved side in the patients with ACL reconstruction that may increase the incidence of patellofemoral disorders. There for it can be concluded that the rehabilitation program should emphasize on regaining the full knee extension and train the patients on the normal sequences of gait especially at the stance phase also an intensive training for quadriceps muscles especially the vastus medialis obliques is of great importance to prevent the patellofemoral disorders after this type of surgery.

Key words: anterior cruciate ligament (ACL), ACL reconstruction, patellofemoral joint, mechanical changes, motion analysis, screw home mechanism.

Content

Title	Page.
Acknowledgement	i
Abstract	iii
List of figures	Iv
List of tables	Vi
List of abbreviations	viii
CHAPTER (I) INTRODUCTION	
Purpose of the study	6
Significance of the study	6
CHAPTER (II)	
REVIEW OF RELATED LITERATURE	
Anatomy of the ACL	8
Biomechanical functions of the ACL	13
The Mechanisms of ACL injury	15
Surgical Treatment of ACL	19
ACL repair	20
ACL reconstruction	21
Intra-articular ACL reconstruction	21
Extra-articular ACL reconstruction	23
Anatomy and biomechanics of patellofemoral joint	
Rehabilitation after ACL reconstruction	34
Kinematics of the knee joint	
Locking mechanism of knee joint	

Chapter (III) Materials and Metods

Selection of the subjects	
Instrumentation	. 49
Procedures	52
Measurements of sulcus and congurence angles	53
Procedure of the axial view	61
Radiological evaluation	63
Chapter (IV) Results	
Descriptive analysis for the sample of study	67
Results of the kinematic data	68
The data collected from the X-ray image	80
Chapter (V)	
Discussion	86
Summary and conclusion	94
Recommendation	97
References	99
Arabic summary	

List of figures

(Fig. 1)	Anatomical structure of the knee	9
(Fig. 2)	The two major bundles of ACL	10
(Fig. 3)	Changes in ACL tension with flexion and extension	11
(Fig. 4)	Unhappy triad	17
(Fig. 5)	ACL tear in landing a jump in skier	18
(Fig.6)	ACL injury during recovery from falling back	18
(Fig 7)	Osseous components of the knee joint	25
(Fig 8)	Articular surface of the patella	25
(Fig 9)	Patellofemoral joint configurations as described by	•
(Fig 10)	Wiberge and Baumgatl	26 29
(Fig. 11)	Measurement of normal sulcus and congruence	
	angles	31
(Fig.12)	Typical normal walk cycle illustrating the events of	
	gait	37
(Fig. 13, a)	Initial contact control	39
(Fig. 13, b)	Terminal stance control	39
(Fig. 14)	Screw home mechanism of the tibiofemoral joint	
	during knee extension	42
Fig.(15)	The instrumentation used in the study	51
Fig. (16)	The different sizes of the reflective dots	51
Fig. (17)	The tools of caliberation befor The motion analysis	54
Fig. (18)	The process of caliberation befor each set of analysis	54
Fig.(19)	The positions of reflective dots fixed on The subject	
	befor walking	55
Fig. (20)	The process of analysis during normal walking on	
	The walk way of Qualysis system	56