سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

REPRODUCTIVE PERFORMANCES IN SHEEP UNDER THE EFFECT OF DIFFERENT FEEDING SYSTEMS

A Thesis

Presented by

Ragab Mohamed Abd El-Monem
(B. V.Sc. 1987)

For the Degree of (M. V. Sc.)

Theriogenology Dept

Faculty of Veterinary Medicine Alexandria University

2004

3

10579

Under the Supervision of

Prof. Dr. F. M. HUSSIN

Prof. of Theriogenology and vicedean for Education and Studen Affairs

Fac. of Vet. Med. Alex. Univ.

Prof. Dr. G. A. El-AMRAWI

Prof. of Theriogenology and vicedean for Community Development and Environment Affairs.

Fac. of Vet. Med. Alex. Univ.

Dr. K.K. Metwelly.

Assist. Prof. of Thriogenology

Fac. of Vet. Med. Alex. Univ.

Prof. Dr. M. H. M. YACOUT

Prof. of Nutrition

Animal Production Research Institute

Agricultural Research Center Ministry of Agriculture

جامعة الاسكندري___ة كليـــة الطــــب البـــــيطرى قســـــم الـــــولادة

قرار لجنة الحكم والمناقشة

قررت لجنة الحكم والمناقشة ترشيح السيد طب/رجب محمد عبد المنعم دحريج للحصول على درجة الماجستير في العلوم الطبية البيطرية البيطرية تخصص الولادة وامراضها والتلقيح السومناعي

اعضاء اللجنة:

أ.د/ محمد يحيى عباس عبـــــود استاذ مادة الولادة ـ كلية الطب البيطـــرى جامعــــة الاسكندريـــــة

أد/ فكرى محمد حسين استاذ مادة الولادة ووكيل الكلية اشنون الطللاب كلية الطب البيطرى – جامعة الاسكندريــــة (والمثرف على الرسالـــــة

أ د/ جمال احمد العمــــــراوى استاذ مادة الولادة ووكيل الكلية لشئون خدمــة المجتمع وتنمية البيئة كلية الطب البيطــــرى جامهــــة الاسكندريــــــة (والمشــــرف على الرسالــــــة)

أ.د/ محمد حلمى محمد ياقـــــوت استاذ تغذية الحيوان بمعهد بحوث الانتاج الحيوانى مركز البحوث الزراعة وزراعة الزراعيـــة والمشــــرف على الرسالــــــــة

تحریرافی: ۱/۳ /۲۰۰۶م

(12 / 1/x

2

ACKNOWLEDGEMENT

Firstly Thanks To ALLAH

I wish to express my sincere appreciation to prof. Dr. F.M. Hussein Prof. of Theriogenology and vicedean for Education and student affairs. Fac. of Vet. Med. Alex. Univ. For suggesting the subject of this thesis and for all his helpfull advice through the period of doing this work.

My deep gratitude to Prof. Dr. G.A. El-Amrawi Prof. of Theriogenology and vicedean for community development and Environment affairs. Fac. of Vet. Med. Alex. Univ. for his sceintfic advice and the help throughout the Period of this work.

Deep thanks for Dr. K.K. Metwelly, assist. Prof. of Theriogenology for giving me the time to discuss many point raised in this work. My deep gratitude are also givin to Prof. Dr. M. H. M. Yacout, Prof. of animal nutrition, APRI Minsitry of Agriculture and the stuff members of Noubaria Experimental Stations for all their help throughout the work of this thesis.

I would like to concern my gratful thanks are done to Dr. A.A. Hussein for all what he done with me in this study.

List of ABBREVIATIONS

CF Crude Fiber

CP Crude Protion

DCP Digestible Crude Protein

DM Dry Matter

OM Orgnic Matter

EE Ether Extract

NFE Nitrogen Free Extract

SV Starch Value

IVOMD in vitro Organic Matter Digestibility

K Cal Kilo Callory

MP Milk Production

DMY Daily milk Yeild

ABS Ammoniated bean Straw

DMI Dry Matter intake

TDN Total Digestible nutrients

N Nitrogen

NB Nitrogen Balance

NI Nitrogen intake

NA Nitrogen absorbed

TDNI Total digestible Nutrient intale

DCPI Digestible Crude Protein intake

FCM Fat corrected milk

VS Vaginal Swelling

WT Waggles of Tail

MD Mucon discharge

CFM Concentrate feed mixture

NPN Non Protein nitrogen

P4 Progestrone

CONTENTS

PA	IGE
INTRODUCTION	1
REVEINW OF LETRATURE	4
MATERIAL AND METHODS	29
RESULTS	36
DISCUSSION	.64
SUMMARY	73
REFERENCES	78
ARABIC SUMMARY	

INTRODUCTION

INTRODUCTION

Sheep are one of the first domesticated mammals. The early domestication of sheep made them closely associated with man. Shelton, (1995) has drawn the attention to sheep potentiality for a growing world population. As a matter of fact, sheep production efficiency depends mainly on their reproductive performance. Thus, the low lambing rate per ewe would be the limiting factor of energetic efficiency of sheep productivity. Within the last three decades, sheep had became one of the preferred animals for research towards understanding and achieving more details on physiological and endocrinological mechanisms of other mammals, by which they may turn off or on their reproductive systems (Deveson et al., 1992 and Karsh, 1995).

Moreover, many areas of interest in human fetal physiology had been developed using the ewe as an experiemental animal. To improve the reproductive efficiency and consequently productivety, efforts would be paid in several direction to accommodate the optimal managerial requirements for our local sheep breeds specially nutrition.

By year 2010 there will be 50% increase in human population (Carter, 1974) and they will need more than 50% more food. As the population more dense, food situation becomes more acute and man and animals will compete for more feed grains.

Beef cattle will have to depend more on products that humans cannot digest or will not eat, such as crop residues that would otherwise be wasted.

In Egypt, there are about 23 million tons of plant by-products rice straw, wheat straw, corn stalks, stovers and cobs, cotton stalks, rice hulls and suger-cane bagasse (Hathout, 1984).

The nutrient requirements of animal population in Egypt were calculated to be 9.933 million tons of TDN and 0.927 million tons of DCP. Requirements for poultry were estimated to be 2.927 million tons of TDN and 0.440 million tons of DCP. Thus the total requirements were 12.860 million tons of TDN and 1.367 million tons of DCP per year as estimated in 1982, **Abou-Akkada** (1984).

Disadvantages of using lignocellulosic materials to feed animals can be summarized as follows: low digestibility, low protein content and low feed intake. The digestibility is low because they consist mainly of cellulose (30-40%), hemicellulose (25-35%) and lignin (10-15%) on dry matter basis (Theander and Aman, 1984). Cellulose especially and also hemicullulose can easily be attacked and digested by rumen microorganisms where as, lignin, generally speaking, is indigestible because lignin decomposing microbes are aerobic, (Hungate, 1975, Prins and Charke, 1979). The low digestibility of straws is due to the fact that lignin is present as a bonding agent in the inter-cellular layer.

This contributes to the mechanical strength of the plant, and generates a composite structure of out standing resistance to microbial attack. Furthermore, part of the cellulose or hemicellulose is surrounded by a lignified tissue (Chesson and ϕ rskov, 1984).

The way to increase digestibility is to destory the linkage between hemicellulose, cellulose and lignin or to destory the compact nature of the tissue, so that lignified tissue is separted from non-lignified one. There has been attempts to do so by mechanical biological and physical treatments (Baker et al., 1975; Han, 1978; Jackson, 1978 and Kaufmann et al., 1978)

Beanstraw may contribute in furnishing a source of dry roughage in summer feeding. The bean straw are generally characterized by their high crude fiber and low nitrogen contents. supplementation with molasses and NPN source might raise its feeding value and palatibility to the extent that it could replace, even partly, the summer forage or good quality hay for diary animals in Egypt.

The present study was conducted to investigate the effect of some different treatments of animal diets, namely molasses, molasses blocks, and ammoniated straw through urea (4%) on the productive and reproductive traits of ewes.