Biochemical and molecular study of Maple Syrup Urine Disease among Egyptian Children

Thesis

Submitted thesis for the degree of Doctor of philosophy in science in Biochemistry

By:

Ehab Abd Elsalam Mahmoud

M.Sc. in Biochemistry (1999)

Under Supervision of

Prof.Dr. Magdy M. Mohamed

Professor of Biochemistry

Faculty of Science -Ain Shams University

Prof.Dr. Osama Kamal Zaki

Professor of Pediatrics

Faculty of Medicine - Ain Shams University

Dr. Dina M. Seoudi

Ass. Professor of Biochemistry Faculty of Science -Ain Shams University

Dr. Nahla Samir Hassan

Ass. Professor of Biochemistry
Faculty of Science- Ain Shams University

Faculty of Science Ain Shams University 2018

سورة البقرة الآية: ٣٢

First of all, thanks to **Allah** whose magnificent help was the main factor in completing this work.

I owe my deepest gratitude to my supervisors **Prof.Dr.** Magdy M. Mahmoud Professor of Biochemistry Faculty of Science Ain Shams University, without his valuable guidance, continuous encouragement and support this study would hardly have been completed. I also express my warmest gratitude to my supervisor Prof. Dr. Osama Kamal Zaki Professor of Pediatrics Faculty of Medicine Ain Shams University Pediatric Hospital- Genetics Unit for making it possible with his able supervision. I also owe a great debt of gratitude to Dr. Dina M. Seoudi, Ass. Professor of Biochemistry Faculty of Science Ain Shams University and Dr. Nahla Samir Hassan, Ass. Professor of Biochemistry Faculty of Science Ain Shams University for their guidance and help over these years. I would like to show my gratitude to colleagues and friends at Genetics Unit **Dr. Eman, Ahmed Moseilhy** for their Help, support and efforts.

Finally, I would like to extend my deepest thanks and gratitude to my dear family for their support to me, and i pray to god with the mercy and the forgiveness for my mother.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim Of Work	5
Review Of Literature	6
1- Inherited Metabolic Disorders	6
2- Inborn Error Of Metabolism	7
 Types Of Inborn Error Of Metabolism 	8
o Organic Acidemia	9
3- Maple Syrup Urine Disease (Msud)	14
o Molecular Studies	16
o The Metabolic Pathway Of Msud	33
o Prevalence Of (Msud)	35
o Clinical Manifestation Of (Msud)	36
o Biochemical diagnosis of (MSUD)	40
 Treatment And Clinical Management 	43
Subjects And Methods	46
1- Subjects	46
o Patients	46
o Biochemical and molecular studies	47
 Screening of IEMs by (LS/MS/MS) 	47
o Blood samples	49
o Ready-made kits	49
o Primers	50

List of Contents

Title	Page No.
2- Methods	
0	RNA purification
0	Synthesis of cDNA from mRNA Template 56
0	Amplification of BCKDHA gene from cDNA by Polymerase Chain Reaction (PCR)
0	Agarose Gel Electrophoresis
0	Sequencing of the PCR product
0	Analysis of the data
Results	66
1- Clinical an	d biochemical manifestation
2. Mutation	analysis of MSUD gene
0	Gel Electrophoresis of PCR products of MSUD cDNA 69
0	Sequence analysis and alignment results of BCKDHA gene
0	Analysis of the Sequencing chromatogram
0	Analysis of the amino acid sequence of the Predicted BCKDHA protein
0	The expected 3-dimention structure of the mutant BCKDHA protein
Discussion	85
Summary	96
References	
Appendix	
Arabic Summ	nary
Arabic Abstra	act -

List of Tables

Table No	o. Title Page I	No.
Table (1-1):	Classification of inborn error metabolism (IEM) different types	12
Table (1-2):	Organic acids excreted in urine in different organic acidurias	13
Table (1-3):	Maple Syrup Urine Disease genetics, clinical phenotype, and biochemical features	39
Table (1-4):	Selected medical foods	44
Table (2-1):	Sequence of primers used for PCR reaction covering mRNA of GCDH sequence	51
Table (2-2):	Preparation of washing buffers and lysis buffer for RNA	53
Table (2-3):	Genomic DNA elimination reaction components	57
Table (2-4):	Reverse-transcription reaction components	58
Table (2-5):	Contents of PCR reaction mixture	60
Table (2-6):	Different degrees of annealing temperatures of different sets of primers	61
Table (3-1):	Biochemical manifestations of MSUD patients	68
Table (3-2):	Size of PCR Products of the three sets of primers	69
Table (3-3):	Mutations identified in the BCKDHA gene of 6 Egyptian patients.	81

List of Figures

Fig. No.	Title	Page No.
Figure (1-1)	BCKDHA gene location on chromosome 19	16
Figure (1-2):	Structure of the BCKDHA protein	17
Figure (1-3):	BCKDHB gene location on chromosome 6	21
Figure (1-4):	Structure of the BCKDHB protein	22
Figure (1-5):	Dihydrolipoamide branched chain transacylase (gene location on chromosome 1	,
Figure (1-6):	Structure of Dihydrolipoamide branched transacylase (DBT) protein	
Figure (1-7):	Dihydrolipoamide dehydrogenase (E3) gene lo on chromosome 7	
Figure (1-8):	Structure of Dihydrolipoamide dehydrogenase protein	
Figure (1-9):	Overview of MSUD testing algorithm in NBS	34
Figure (1-10): Algorithm for newborn screening for MSUD allo-Ile determination in dried blood spots second-tier assay	as a
Figure (2-1):	Schematic representation of electrospray ionize The liquid sample flows through a charged cap which produces positively charged droplets at by a negatively charged micro droplet int MS/MS.	pillary tached to the
Figure (2-2):	Schematic representation of the flow of ic Tandem Mass Spectrometer	
Figure (2-3):	RNA purification from whole blood sample by RNA Purification Mini Kit	_
Figure (3-1):	1% Agarose gel electrophoresis of amplicons products with about 550 base pair of first primers starts from position 17 to544 using sequence	set of primer

List of Figures

Fig. No.	Title	Page No.
Figure (3-2)	:1% Agarose gel electrophoresis of amplicons products with about 550 base pair of third primers	set of
Figure (3-3)	: 1% Agarose gel electrophoresis of amplicons products with about 650 base pair of second primers	set of
Figure (3-4)	:The homozygous novel frame shift mutati BCKDHA gene; del T 512 generating mi mutation L171Rfs*159	ssense
Figure (3-5)	:The homozygous novel frame shift mutation bases of BCKDHA gene	
Figure (3-6)	:The homozygous frame shift mutation in 8 ba BCKDHA gene	
Figure (3-7)	:The homozygous base substitution transv mutation of BCKDHA gene; 1312T>A	
Figure (3-8)	Deduced amino acid sequence of wild type BCF protein representing 446 amino acids	
Figure (3-9)	:Protein predicted from c.512_512delT mu giving p. L171Rfs*159 mutation in Bold mutation)	(novel
Figure (3-	GGGCTGTGGC mutation giving p. R3160 mutation in Bold (novel mutation)	Qfs*11
Figure (3-1)	1): Protein predicted from c.859_866delCGAGe region generating G288Vfs*11 missense mutat bold	tion in
Figure (3-1	12): Protein predicted from c c.1312T>A substitution transversion generating missense Y mutation in bold	base 7438N
Figure (3-13	e): 3D model of normal BCKDHA precursor prot	ein82

List of Figures

Fig. No.	Title	Page No.
•		th p.Leu 171Arg mutation83
•		th p. Arg316Gln mutation83
Figure (3-16): 3	3D model of subunit with	p. Gly288Val mutation84
Figure (3-17): 3	BD model of subunit with	p.Tyr438Asn mutation84

List of Abbreviations

Abb. Meaning

allo-Ile	allo-Isoleucine
αKGDH	α-ketoglutarate dehydrogenase complex
BCCAs	Branched chain amino acids
BCKAs	Branched chain α-keto acid
BCKDC	branched-chain alpha-ketoacid dehydrogenase complex
BCKDH	Branched chain ketoacid dehydrogenase
BCKDHA	The BCKDHA gene encodes the alpha subunit of E1
ВСКОНВ	The BCKDHB gene encodes the beta subunit of E1
BIA	bacterial inhibition assay
CNS	central nervous system
DBT	Dihydrolipoamide branched chain transacylase
DLD	Dihydrolipoamide dehydrogenase
DLDD	dihydrolipoamide dehydrogenase deficiency
El	branched chain α-ketoacid decarboxylase
E2	dihydrolipoyl transacylase
E3	dihydrolipoamide dehydrogenase
HPLC	high-performance liquid chromatography
IEM	inborn errors of metabolism

List of Abbreviations

Abb.	Meaning
MSUD	Maple Syrup Urine Disease
NBS	newborn screening
OADs	Organic acid disorders
PDH	pyruvate dehydrogenase complex
PKU	phenylketonuria

INTRODUCTION

aple syrup urine disease (MSUD), originally described by Menkes in 1954, is an inherited genetic disease with an autosomal recessive pattern affecting approximately 1 out of 120,000 infants worldwide (*Parmar et al.*,2004).

Maple syrup urine disease (MSUD), or branched chain ketonuria caused by impaired Branched chain α -ketoacid dehydrogenase (BCKDH) complex activity (*Danner and Elsas*, 1989). The biochemical basis of this disease is the inability to metabolize branched chain α -keto acid (BCKAs) derived from the essential branched chained amino acids (BCAAs): leucine, isoleucine, and valine. The elevated BCAAs and BCKAs may have severe clinical consequences including ketoacidosis, mental retardation, and neurological impairment (*Sakai et al.*, 2005).

The determination of branched chain amino acids, α - keto acid derived from BCAA, methionine, phenylalanine and tyrosine is currently the most reliable approach for the diagnosis of MSUD (*Kandar et al.*, 2009). Diagnosis is also made clinically based on the peculiar maple syrup odor or sugar burnt of the urine, encephalopathy, and α -ketoacids in urine. The presence of plasma L-alloisoleucine and urinary α -hydroxyisovalerate are pathognomonic for MSUD (*Sakai et al.*, 2005).