THE ROLE OF CARDIAC MAGNETIC RESONANCE IMAGING IN THE DIAGNOSIS OF CARDIOMYOPATHY IN PEDIATRICS

Thesis

Submitted for partial fulfillment of M.D Degree in Radiodiagnosis

BY

Sara Mahmoud Kamel Ali

M.B.B.Ch,M.Sc

Supervised by

Prof. Hassan Ali Hassan El Kiki

Professor of Radiodiagnosis

Faculty of Medicine

Cairo University

Prof. Zeinab Salah El Din Mohamed Selim

Professor of Pediatric Faculty of Medicine Cairo University

Dr. Rania Zakaria Hassan

Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2015

"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

سورة البقرة-الآية32

Acknowledgement

First and foremost, I would like to express my deepest gratitude and thankfulness to Allah for giving me the will and strength to fulfill this work and then for my family for their continuous encouragement and great helps.

My sincere gratitude and unlimited thanks are addressed to my mentor Dr. Hassan Elkiki, professor of radiodiagnosis, Cairo University, for his continuous advice, encouragement and sincere remarks. It has been an extreme pleasure for me to proceed with this work under his supervision.

I would also like to thank Dr.Zeinab Salah Eldin for her support, encouragement, cooperation and input what made this research possible.

I am also grateful to Dr.Rania Zakaria, lecturer of radiodiagnosis, Cairo University. I am extremely thankful and indebted to her for sharing expertise, and sincere and valuable guidance and encouragement extended to me.

Last but not least, my deep gratitude and thanks to all my dear professors and colleagues of the radiology department for their help and cooperation.

Dedication

To all my family members for their inspiration, indispensable support and continuous encouragement

TABLE OF CONTENTS

List of figures	i
List of tables	x
List of abbreviations	xi
Abstract	xvi
Introduction	xvii
Aim of the work	xix
Review of literature	1
Diagnosis of cardiomyopathy	2
Technique of cardiac MRI	16
Cardiac MRI	36
Cardiac MRI in cardiomyopathy	69
Patients and methods	100
Results	107
Case presentation	119
Discussion	
Summary and conclusion	152
Recommendations	154
References	155
الملخص العربي	

LIST OF FIGURES		
No.		Page
Figure 1	Four-chamber bidimensional echocardiographic view of a 16 year-old asymptomatic male patient with hypertrophic cardiomyopathy with asymmetric septal hypertrophy. The septum and the posterior wall measure 21 mm and 9.5 mm respectively (Alday and Moreyra; 2012).	9
Figure 2	CMR set-up for paediatric general anaesthetic cases. View of the MR scanner room showing the anesthetic machine (A) and monitoring equipment (B). Ventilation tubing and leads from both pieces of equipment pass through a small opening in the wall (C) into the control room, so that the anesthetist can control breath-holding and monitor the patient from within the control room (Ntsinjana et al; 2011).	18
Figure 3	A 1.5T magnet used in cardiac imaging (Norton et al; 2013).	19
Figure 4	A typical RF coil used in cardiac MRI. This is placed on the patient's chest during the study (Norton et al;2013).	19
Figure 5	Representative black blood images of the heart in the short-axis (A), vertical long axis (B), 4-chamber (C) and left ventricular outflow tract (D) views are shown in this figure. Notice effective nulling of blood independent of the orientation of the acquisition (Krishnamurthy et al; 2014).	22
Figure 6	Example of Cardiac Magnetic Resonance Tagging .The tags are seen as dark lines. The deformation of the tag lines can be seen at end-systole (Petersen et al; 2011).	24
Figure 7	Phase-contrast images of a normal subject. A and B, Transverse aortic (A) and pulmonary artery (B) phase-contrast images (Ginat et al; 2011).	25
Figure 8	Gadolinium enhancement patterns in ischemic versus nonischemic cardiomyopathy. Top row indicates carton of enhancement pattern, and bottom row shows patient examples from short-axis delayed enhancement MRI. A, Subendocardial enhancement or transmural enhancement is associated with infarction from ischemic disease.	28

	B , Nonischemic cardiomyopathy with midwall stripe pattern.	
	This pattern is common in idiopathic dilated cardiomyopathy.	
	C, Nonischemic cardiomyopathy with epicardial enhancement	
	pattern .This patient had viral myocarditis. (Hunold et al; 2005).	
Figure 9	Cardiac amyloidosis (a, b) Delayed contrast-enhanced short axis	30
	cardiac MR images show diffuse subendocardial enhancement	
	(arrows) that is not limited to a vascular distribution, along with	
	the absence of blood pool enhancement, findings that are	
	characteristic of cardiac amyloidosis (Cummings et al; 2009).	
Figure 10	Histiocytoid cardiomyopathy in a 7-month-old girl who	32
	presented with recurrent ventricular tachyarrhythmias. Delayed	
	contrast-enhanced short-axis single-shot true FISP images	
	obtained from the base (a) toward the apex (c) show multiple	
	enhancing nodules (arrow) involving the subendocardium of the	
	septal, inferior, and lateral walls. Transcatheter myocardial	
	biopsy revealed histiocytoid myocytes consistent with	
	histiocytoid cardiomyopathy. The patient subsequently underwent	
	cardiac transplantation (Cummings et al; 2009).	
Figure 11	Representative Segmentation and Pattern of Contrast HE over	34
g	17-Segments of the LAD, RCA, and LCX Arteries .A single	
	basal, mid, apical, and 2-chamber contrast-enhanced views of 3	
	subjects (left panels) following an acute myocardial infarction	
	with occlusion to the left anterior descending (LAD) artery, right	
	coronary artery (RCA), and left circumflex (LCX) artery. The	
	dotted yellow lines delineate and separate the 17-segments over	
	the entire left ventricle. Bulls-eye diagrams (right) reveal the	
	pattern of infarction for each example. CMR cardiac magnetic	
	resonance; HE hyperenhancement (Ortiz-Pérez et al;2008).	
Figure 12	Chart illustrates the differential diagnosis of delayed contrast	35
_ _	enhancement at cardiac MR imaging by location (Cummings et	
	al; 2009).	
Figure 13	Schematic shows orientation of major body planes with respect	37
g	to patient and their corresponding appearance on bright blood	
	imaging sequences (Ginat et al;2011).	
Figure 14	Schematic shows orientation of major cardiac planes with respect	38
8	to heart and their corresponding appearance on bright blood	
	sequences (Ginat et al; 2011).	
Figure 15	Normal cardiac MRI anatomy shown in healthy subject. A–E,	40
1501010	Short-axis (A), horizontal long-axis (B), two-chamber (C), right	••
	Short will (1), northernal long with (D), two chamber (C), light	

	ventricular outflow tract (D), and left ventricular outflow tract	
	(E) views (Ginat et al; 2011).	
Figure 16	Normal cardiac MRI anatomy shown in healthy subject. Axial fast imaging employing steady-state acquisition image shows prominent crista terminalis (<i>arrow</i>). This finding is normal	43
	variant not to be confused with tumor or thrombus (Ginat et al; 2011).	
Figure 17	Transverse images in normal cardiac MRI (Bogaert et al; 2005).	44
Figure 18	Coronal images in normal cardiac MRI. Lm left main stem coronary artery.mv mitral valve.sv sinus of valsalva ;Other abbreviations as in the previous figures (Bogaert et al;2005).	45
Figure 19	Sagittal images in normal cardiac MRI .lad left anterior descending coronary artery;lcx left circumflex artery ;pavg posterior (or left) atrioventricular groove; puv pulmonary valve; sv sinus of valsalva;other abbreviations as in Figure 16(Bogaert et al;2005).	46
Figure 20	Short-axis images in normal cardiac MRI ,aivg anterior interventricular groove ;d diaphragm; lvap LVapex; pivg posterior interventricular groove ;other abbreviations as in preceding figures (Bogaert et al;2005).	47
Figure 21	Horizontal long –axis images in normal cardiac MRI.fo fossa ovalis; pda posterior descending artery. Other abbreviations as in preceding figures (Bogaert et al;2005).	48
Figure 22	Vertical long-axis images in normal cardiac MRI .Abbeviations as in preceding figures (Bogaert et al;2005).	49
Figure 23	Left ventricular outflow tract images. Abbreviations as in preceeding figures (Bogaert et al;2005).	50
Figure 24	Right ventricular outflow tract image. Abbreviations as preceeding figures (Bogaert et al;2005).	50
Figure 25	Display, on a circumferential polar plot, of the 17 myocardial segments and the recommended nomenclature for tomographic imaging of the heart (Cerqueira et al; 2002).	51
Figure 26	Assignment of the 17 myocardial segments to the territories of the left anterior descending (LAD), right coronary artery (RCA), and the left circumflex coronary artery (LCX) (Cerqueira et al ; 2002).	52
Figure 27	MR tissue tagging in short-axis orientation for strain analysis of the myocardial motion (Westenberg; 2011).	55
Figure 28	LV time-volume relation (c) determined by planimetry from a	58

	14'-1'	
	multislice cine short-axis dataset (b), planned perpendicular to	
	the long-axis of the LV (a). From the time-volume relation, early	
	peak filling rate (EPFR) is determined from the steepest gradient	
	in the volume curve in the early filling phase. Atrial filling	
	fraction (AFF) is determined in the atrial filling phase	
	(Westenberg; 2011).	
Figure 29	Left atrial size is determined by biplane Simpson's rule on the	59
	atrial areas determined in four-chamber (a) and two-chamber (b)	
	view (Westenberg; 2011).	
Figure 30	At the moment of end-systole, an acquisition plane is positioned	60
	at the mitral valve (a). Through-plane one-directional velocity-	
	encoded MRI (magnitude and velocity image in b) results in a	
	time-flow rate graph (c), which is used for wave form analysis.	
	Early (E) and atrial (A) peak filling rate can be determined, as	
	well as the deceleration time (DT) of the E-peak (Westenberg;	
	2011).	
Figure 31	Three-dimensional three-directional velocity-encoded MRI at the	61
	aorta and mitral valve (a) results in velocity images reconstructed	
	at the ascending aorta (b) and the mitral valve (d). From the	
	velocity images, time-flow rate graphs (c and e) are obtained	
	from which the isovolumic relaxation time (IVRT) can be	
	determined (Westenberg; 2011).	
Figure 32	In-plane one-directional velocity-encoded MRI in four chamber	62
1 1902 0 0 2	orientation (magnitude image in (a) and velocity image in (b)	~ _
	Velocity sampling at the pulmonary vein (arrow) results in a time	
	velocity graph (c), from which peak systolic velocity (S), peak	
	anterograde diastolic velocity (D), and peak atrial reversal	
	velocity (Ar) can be determined (Westenberg; 2011).	
Figure 33	The time-resolved velocity vector field (presented with color	64
I Iguit 33	coding) on a four-chamber view is obtained from three-	UT
	dimensional three-directional velocity-encoded MRI. From this	
	inflow velocity vector field, the flow propagation velocity can be	
	determined (Westenberg; 2011).	
Figure 34	Left ventricular volumes and mass. Lines indicate median and	65
riguic 34	95% prediction bands (Buechel et al;2009).	UJ
Figure 35	Right ventricular volumes and mass. Lines indicate median	67
riguit 33	and 95% prediction bands (Buechel et al;2009).	U1
Figure 36	Cine balanced steady-state free precession (SSFP) images are	71
	routinely used for ventricular volumetry, due to their high blood-	
L	1 2/	

Figure 41	ARVD. Right-ventricular horizontal long-axis DE-MRI	83
	of sarcoidosis (Maceira and Mohiaddin; 2012).	
	subendocardial/intramyocardial/subepicardial fibrosis in a case	
	cardiomyopathy and	
	disease, global diffuse subendocardial fibrosis in amyloid	
	subendocardial fibrosis in the lateral wall in a case of Fabry's	
	fibrosis in a case of hypertrophic cardiomyopathy,	
	hypertensive cardiomyopathy patient, confluent intramyocardial	
	very subtle focal intramyocardial fibrosis in the basal septum of a	
	patterns (arrows) are shown corresponding to each condition:	
	sarcoidosis. Different gadolinium myocardial enhancement	
	Fabry's disease, cardiac amyloid infiltration and cardiac	
	hypertensive cardiomyopathy, hypertrophic cardiomyopathy,	
	types of hypertrophy are depicted. From left to right:	
riguit 70	and LGE-sequences (below) in the 4-chamber view of several	υυ
Figure 40	Differential diagnosis of LVH. Diastolic SSFP cines (above)	80
	the interventricular septum (arrow) (Alday and Moreyra; 2012).	
	boy with a localized delayed gadolinium enhancement image in	
	diffuse pattern of fibrosis (arrowheads). B: Long axis view of a cardiac magnetic resonance image of the heart of a 9 year-old	
	with positive delayed gadolinium enhancement indicating a	
Figure 39	A .Cardiac magnetic resonance image of the heart of a patient	79
E' 20	posterior wall, RV: right ventricle) (Alday and Moreyra; 2012).	70
	failure. (IVS: interventricular septum, LV: left ventricle, PW:	
	projection of the heart of a 3 year-old boy with severe heart	
	cardiomyopathy. B: Magnetic resonance imaging of a short axis	
	year-old asymptomatic boy with severe hypertrophic	
Figure 38	A. Long axis view of a cardiac magnetic resonance image of a 5	78
Figure 37	Contour tracing in the endsystolic phase (Buechel et al; 2009).	71
	calculated (Krishnamurthy et al;2014).	
	EDV – ESV), and ejection fraction (EF = SV/EDV*100) are	
	volume (ESV). From EDV, and ESV, the stroke volume (SV =	
	summed to obtain the end-diastolic volume (EDV), end-systolic	
	at end-systole and end-diastole for all the slices. The areas are	
	diastole. Contours demarcating the LV and RV cavity are drawn	
	from the stack at three different locations, and at systole and	
	to the apex is obtained (A); (B) shows representative images	
	thickness) covering both the ventricles from the base of the heart	
	quantification, a stack of short axis slices (~8 mm slice)	

	demonstrates diffuse, subendocardial enhancement of thinned RV wall, consistent with fibrous replacement (arrows) (Rajiah, and Flamm; 2009).	
Figure 42	Coronal bright blood cine (to the left) and axial bright blood cine (to the right) images from cardiac MRI showing a markedly dilated left ventricle and left atrium. The left ventricle shows prominent trabeculation particularly along the apex. A small pericardial effusion and a small pleural effusion are also noted (Fox et al; 2006).	84
Figure 43	Nonischemic dilated cardiomyopathy. Four-chamber DE-MRI demonstrates a dilated LV with linear mid myocardial scarring in the basal septum (arrows). The coronary arteries were normal in this patient (Rajiah , and Flamm ; 2009).	87
Figure 44	Assessment of increased ventricular coupling using real-time cine CMR in constrictive pericarditis. Short-axis cine CMR at onset of inspiration (a) and onset of expiration (b). Images are acquired at early ventricular filling. Septal inversion occurs at inspiration (a), with increased right-sided septal motion at expiration (b), leading to an abnormal respiratory septal shift. The horizontal dashed lines indicate the position of the left hemidiaphragm (Bogaert and Francone; 2009)	90
Figure 45	Acute myocarditis. Three-chamber long-axis DE-MRI demonstrates patchy, mid myocardial-to-epicardial enhancement in the basal and mid inferolateral and inferior walls (arrows) (Rajiah, and Flamm; 2009).	93
Figure 46	Examples of cardiomyopathies. A. 4-chamber, balanced-SSFP view in hypertrophic cardiomyopathy. Note the marked thickening of the septum with compression of the RV cavity. B. 4-chamber, balanced-SSFP view in left ventricular non-compaction. Note the arrowheads show areas of thin compacted myocardium. C. 4-chamber, late gadolinium enhancement (LGE) image in idiopathic dilated cardiomyopathy. Note no LGE. D. Short-axis, LGE image in a patient with critical aortic stenosis, restrictive cardiomyopathy secondary to global, sub-endocardial fibrosis (Ntsinjana et al;2011).	94
Figure 47	Cardiac sarcoidosis. Mid ventricular short-axis DE-MRI demonstrates patchy, mid myocardial scarring in the inferoseptum (arrow) in a patient with known systemic	97

	sarcoidosis (Rajiah, and Flamm; 2009).	
Figure 48	This poster shows easy and efficient planning of the main cardiac views using the Philips Intera Cardiac Package(www. Philips.com).	104
Figure 49	Sex distribution of the study sample.	107
Figure 50	Pie chart representing the types of cardiomyopathy in the study sample.	109
Figure 51	Correlation between LV EDV and BSA among the study sample, LVEDV: left ventricular end diastolic volume, BSA: body surface area.	115
Figure 52	Correlation between LV ESV and BSA among the study sample, LVESV: left ventricular end systolic volume, BSA: body surface area.	116
Figure 53	Correlation between RV EDV and BSA among the study sample, RVEDV: right ventricular end diastolic volume, BSA: body surface area.	117
Figure 54	Correlation between RV ESV and BSA among the study sample, RVESV: right ventricular end systolic volume, BSA: body surface area.	118
Figure 55	Four chamber SSFP view showing markedly dilated right atrium (red circle to the left), and markedly dilated left atrium (yellow circle to the right) with moderate mitral regurge (MR).	119
Figure 56	Four chamber view SSFP showing average size of both ventricle.	120
Figure 57	Inversion Recovery (IR) Short axis view showing subendocardial enhancement at the inferoseptal wall of the left ventricle (red arrow).	120
Figure 58	Cardiac MRI four chamber view showing enlarged both atria with normal size of both ventricles, (RA) right atrium, (LA) left atrium.	123
Figure 59	Cardiac MRI (to the left) four chamber view sowing the congested hepatic veins (arrow head), (to the right) IR (inversion recovery) delayed post contrast short axis view, 10 minutes after contrast administration showing no enhancement.	124
Figure 60	Automated wall motion analysis of the left ventricle using the Philips work station, showing global hypokinesia with patchy supero-septal areas of marked hypokinesia.	124

Figure 61	Cardiac MRI four chamber view showing markedly dilated both atria with normal size of both ventricles. Moderate pericardial effusion is also noted (arrow head). (RA) right atrium, (LA) left atrium.	127
Figure 62	Short axis view during early diastole (to the right) and late diastole (to the left) showing the flattening of the interventricular septum during early diastole (arrow).	128
Figure 63	Axial T2-TSE cardiac MRI showing the pericardial thickness of 2.3mm. Mean normal pericardial thickness is 1.2 ± 0.8 mm and does not exceed 2.5 mm. Pericardial thickness ≥ 3 mm is considered thicknesd.	128
Figure 64	Automated wall motion analysis of the left ventricle using the Philips work station, showing dyskinesia at the septal wall of the left ventricle (interventricular septum) (blue, arrowed at the upper right image) with mild hypokinesia of the rest of the left ventricular walls.	129
Figure 65	Four chamber view SSFP during systole (to the left) and diastole (to the right) showing the dilated left ventricle.	132
Figure 66	Four chamber view showing normal origin of the right coronay artery (yellow arrow) and the left coronary artery (red arrow) form the aorta.	133
Figure 67	IR (inversion recovery) delayed post contrast short axis view, 10 minutes after contrast administration showing no enhancement.	133
Figure 68	Automated wall motion analysis of the left ventricle using the Philips work station, showing global left ventricular hypokinesia.	134
Figure 69	Four chamber view SSFP showing cardiomegaly, with left ventricular enlargement.	136
Figure 70	Four chamber view SSFP showing normal origin of the left coronary artery (yellow arrow) and right coronary artery from the aorta (red arrow).	137
Figure 71	Automated wall motion analysis of the left ventricle using the Philips work station, showing global hypokinesia with patchy supero-septal areas of marked hypokinesia.	137
Figure 72	IR (inversion recovery) delayed post contrast short axis view, 10 minutes after contrast administration showing no enhancement.	138
Figure73	Four chamber view showing the ratio of the non compacted to compacted myocardium at the lateral wall of the left ventricle	140

	<u> </u>	
	(arrow head) 2.5 and at the apex (red arrow) 5.6 (Both are more	
	than 2.3)	
Figure 74	Four chamber view showing the deep intertrabecular recesses of	141
	the non compacted layer.	
Figure 75	Four chamber view during systole (to the left) and during	143
	diastole (to the right) showing almost complete obliteration of	
	the left ventricular cavity during the systole with marked	
	asymmetrical myocardial thickening and mild mitral regurge	
	(arrow to the left).	
Figure 76	Vertical long axis view during systole (to the left) and during	144
	diastole (to the right) showing the same previous findings.	
Figure 77	Inversion Recovery (IR) Short axis view showing patchy areas of	144
	myocardial enhancement not confined to a known vascular	
	distribution (arrows).	

LIST OF TABLES No. **Page** Table 1 European Society of Cardiology classification of primary 3 cardiomyopathies (modified from Elliot, et al., 2008). Table 2 World Health Organization classification of cardiomyopathies 4 (Maron et al; 2006). Table 3 AHA classification model for primary cardiomyopathies 5 (Maron et al; 2006). Optimal Planes for Imaging Cardiac Structures and Chambers Table 4 **39** (Ginat et al;2011). Classification of diastolic dysfunction (Westenberg; 2011). Table 5 57 Table 6 Sex distribution of the study population 107 Table 7 Demographic data of the study population 108 Table 8 Types of cardiomyopathy in the study population 109 Table 9 Cardiac MRI findings within the study population 110 Relative atrial volume ratio (RAR) in cases referred to have Table 10 111 constrictive pericarditis versus restrictive cardiomyopathy. Left ventricular volumes measured by MRI in the study Table 11 112 population. Right ventricular volumes measured by MRI in the study Table 12 113 population. Table 13 CMR findings in Dilated cardiomyopathy patients. 114