Quantification of Core Antigen Monitors Efficacy of Combination Therapy of Sofosbuvir, Daclatasvir and Ribavirin in Egyptian Cirrhotic Patients with HCV Infection as an Alternative to PCR

Thesis

Submitted for Partial Fulfillment of Master Degree In Internal Medicine

By

Afnan Helmy Hassan Ahmed Baraka

M.B.B.Ch, (2013) Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Ehab Hassan Nashaat Allam

Prof. of Internal Medicine and Gastroenterology, Faculty of Medicine, Ain Shams University

Prof. Dr. Hossam EL-Dein Abdel-azziz

Prof. of Internal Medicine and Gastroenterology, Faculty of Medicine, Ain Shams University

Dr. Ahmed Ibraheem Mohammed Elshafie

Lecturer of Internal Medicine and Gastroenterology, Faculty of Medicine, Ain Shams University

Faculty of Medicine

Ain Shams University 2019

List of Contents

Page

Title

•	List of Abbreviations I
•	List of TablesVI
•	List of FiguresIX
•	Introduction
•	Aim of the Work
•	Review of Literature
	- Chapter (1): HCV Infection
	- Chapter (2): HCV Diagnosis
	- Chapter (3): HCV Treatment
•	Patients and Methods
•	Results83
•	Discussion

Arabic Summary..... --

List of Abbreviations

(g/l)Gram per Litre
2'5'OAS2'5'-Oligoadenylate Synthetase
AFPAlpha Feto Protein
ALTAlanine Aminotransferase
ALTAlanine Aminotransferase
APRIAspartate Aminotransferase to Platelet Ratio Index
ARFIAcoustic Radiation Force Impulse
ASTAspartate Aminotransferase
BMIBody Mass Index
CDCCenters for Disease Control and Prevention
CHCChronic Hepatitis C
CLDChronic Liver Disease.
CLIAClinical Laboratory Improvement Amendments
CRP C Reactive Protein
CTGFConnective Tissue Growth Factor
CTPChild-Turcotte-Pugh Classification System
CYPCytochrome P450
DAAsDirect Antiviral Agents
DNA Deoxyribnucleic Acid
E proteinsEnvelope glycoproteins
EASL European Assosciation for the Study of the Liver
EIA or ELIZAEnzyme Linked Immunosorbent Assay
EREndoplasmic Reticulum
ESRDEnd Stage Renal Disease
ETREnd of Treatment Response
EVREarly Virologic Response

FFPFresh Frozen Plasma
GE/mL Genome Equivalents per Milliliter
GFR Glomerular Filtration Rate
GGTγ Glutamyl Transferase
HAHyaluronic Acid
HAHyaluronic Acid
HAVHepatitis A Virus
HBVHepatitis B Virus
HBVHepatitis Bvirus
HCC Hepatocellular Carcinoma
HCV AbHepatitis C Virus Antibody
HCV RNA Hepatitis C Virus Ribonucleic Acid
HCV Hepatitis C Virus
HCVCore Antigen (CAg)
HCV-Ag Hepatitis C virus Antigen
HIV Human Immunodeficiency Virus
HSCHepatic Stellate Cells
HVRHypervariable Regions
INR International Normalized Ratio
IRESInternal ribosome entry site
ISGF3IFN-Stimulated Gene Factor 3
ISGsIFN-Stimulated Genes
Jak/STATJanus Kinase/Signal Transducers and Activators of
Transcription
LDLLow Density Lipoprotein
LFTsLiver Function Tests
MCMixed Cryoglobulinemia
MFAP-4Microfibril-Associated Glycoprotein 4

mmol/l Millimoles per Litre
MREMagnetic Resonance Elastography
NAATNucleic Acid Amplification Test
NATNucleic Acid Test
NCCVHNational Committee for Control of Viral Hepatitis
NCCVHNational Committee for the Control of Viral Hepatitis
NPIsNucleoside Polymerase Inhibitors
NPVNegative Predictive Value
NSP Non Structural Proteins
OCI Occult Hepatitis C Virus Infection
PBMCsPeripheral Blood Mononuclear Cells
PCRPolymerase Chain Reaction
Peg IFNPegylated Interferon
PGAProthrombin Index, Gamma Glutamyltransferaset,
Apolipoprotein A1
P-gpP-glycoprotein
PICPProcollagen Type I Carboxy Terminal Peptide
PHINPProcollagen Type III Amino-Terminal Peptide
PIsProtease Inhibitors
PPVPositive Predictive Value
PT Prothrombin Time
PTTPartial Thromboplastin Time
PWIDs People Who Inject Drugs
RBVRibavirin
RdRpRNA Dependent RNA Polymerase
RIBARecombinant immunoblot assays
RT-PCR Real-Time Polymerase Chain Reaction
RT-PCR Reversr Transcription Polymerase Chain Reaction

RVR	Rapid Virological Response
SD	Standard Deviation
SHEA	Society for Healthcare Epidemiology of America
SR-B1	Scavenger Receptor Class B Type 1
SVR	Sustained Virologic Response
TGF-β1	Transforming Growth Factor-β1
Th1	T Helper 1 Cells
TIMP-1	Tissue Inhibitor of Metalloproteinases
TIMPs	Tissue Inhibitors of Matrix Metalloproteinases
TMA	Transcription-Mediated Amplification
TMDs	Two Transmembrane Domains
VCTE	Vibration Controlled Transient Elastography
WHO	World Health Organization

List of Tables

Table (1):	Indirect Serum Markers of Liver Fibrosis26
Table (2):	The Child–Turcotte score
Table (3):	Recommended Treatment for Chronic Hepatitis C Virus Infection by the Most Common Genotypes in the United States
Table (4):	Predictors of SVR37
Table (5):	Side effects of Pegylated Interferon and Ribavirin for the therapy of HCV Infection
Table (6):	Absolute and relative contraindications to Interferon and ribavirin
Table (7):	Approved HCV DAAs in Europe in 201840
Table (8):	Drug-drug interactions between HCV DAAs and antiretrovirals
Table (9):	Drug-drug interactions between HCV DAAs and illicit recreational drugs or drugs of abuse

Table (10):	drugs
Table (11):	Drug-drug interactions between HCV DAAs and Immunosuppresants
Table (12):	Drug-drug interactions between HCV DAAs and CNS drugs 47
Table (13):	Drug-drug interactions between HCV DAAs and cardiovascular drugs
Table (14):	Study of patients included in the study according to sex 83
Table (15):	Study of HCV core antigen before and after treatment84
Table (16):	Haemoglobin levels before and after treatment85
Table (17):	TLC levels before and after treatment87
Table (18):	Platelates level before and after treatment88
Table (19):	T. Bilirubin levels before and after treatment90
Table (20):	D. Bilirubin level before and after treatment91
Table (21):	ALT level before and after treatment93

Table (22):	Demonstration of AST level before and after treatment94
Table (23):	Creatinine level before and after treatment96
Table (24):	AFP level before and after treatment97
Table (25):	PT level before and after treatment99
Table (26):	PTT level before and after treatment 100
Table (27):	INR level before and after treatment102
Table (28):	Albumin level before and after treatment103
Table (29):	HCVRNA level before treatment according to sex105
Table (30):	Correlation between HCV RNA and HCV core antigen level before treatment106
Table (31):	Correlation between HCV RNA, age TLC, H.B, RBCS, Platelates, T.billirubin, D.bilirubin, AlT, AST, Albumin, AFP, PT, PTTand INR level before treatment
Table (32):	Correlation between HCV Core Antigen ,age,TLC,H.B,RBCS,Platelates,T.billirubin,D.bilirubin, AIT, AST, Albumin, AFP, PT, PTTand INR level before treatment

Table (33):	Correlation between HCV Core Antigen
	,age,TLC,H.B,RBCS,Platelates,T.billirubin,D.bilirubin, AlT,
	AST, Albumin, AFP, PT, PTT and INR level after treatment.
Table (34):	Descriptive data of baseline characteristics of patients 115
Table (35):	HCV Core Antigen level before and after treatment with DAAS
	therapy118

List of Figures

Fig. (1):	Suggested algorithm for hepatitis C virus testing in anti-hepatitis
	C virus positive individuals19
Fig. (2):	Evaluation and follow up of fibrosis progression22
Fig. (3):	Fibroscan score
Fig. (4):	Genome organisation of Hepatitis C virus42
Fig. (5):	Model of the HCV lifecycle43
Fig. (6):	Mechanism of action of DAAs44
Fig. (7):	Demonstration of patients included in the study according to sex83
Fig. (8):	Demonstration of HCV core antigen level before and after treatment
Fig. (9):	Demonstration of HCV core antigen level before and after treatment85
Fig. (10):	Demonstration of Haemoglobin level before and after treatmet86
Fig. (11):	Demonstration of Haemoglobin level before and after treatmet86
Fig. (12):	Demonstration of TLC level before and after treatment 87
Fig. (13):	Demonstration of TLC level before and after treatment 88
Fig. (14):	Demonstration of Platelates level before and after treatment89
Fig. (15):	Demonstration of Platelates level before and after treatment89
Fig. (16):	Demonstration of T. Bilirubin level before and after treatment90
Fig. (17):	Demonstration of T. Bilirubin level before and after treatment91
Fig. (18):	Demonstration of D. Bilirubin level before and after treatment92

Fig. (19):	Demonstration of D. Bilirubin level before and after treatment92
Fig. (20):	Demonstration of ALT level before and after treatment 93
Fig. (21):	Demonstration of ALT level before and after treatment 94
Fig. (22):	Demonstration of AST level before and after treatment95
Fig. (23):	Demonstration of AST level before and after treatment95
Fig. (24):	Demonstration of Creatinine level before and after treatment96
Fig. (25):	Demonstration of Creatinine level before and after treatment97
Fig. (26):	Demonstration of AFP level before and after treatment98
Fig. (27):	Demonstration of AFP level before and after treatment98
Fig. (28):	Demonstration of PT level before and after treatment 99
Fig. (29):	Demonstration of PT level before and after treatment
Fig. (30):	Demonstration of PTT level before and after treatment 101
Fig. (31):	Demonstration of PTT level before and after treatment 101
Fig. (32):	Demonstration of INR level before and after treatment 102
Fig. (33):	Demonstration of INR level before and after treatment 103
Fig. (34):	Demonstration of Albumin level before and after treatment. 104
Fig. (35):	Demonstration of Albumin level before and after treatment. 104
Fig. (36):	Demonstration of HCVRNA level before treatment according to sex
Fig. (37):	Scatter plot figure between HCV Core Antigen and Total billirubin
Fig. (38):	Scatter Plot figure between HCV Core Antigen and Albumin117

ABSTRACT

Background: Hepatitis C virus (HCV) is a major public health problem throughout the world. Acute HCV infection is asymptomatic in most cases, and only 15% of cases are symptomatic, but Chronic hepatitis C (CHC) shows a variable clinical course, ranging from mild histopathological changes to active hepatitis and the development of hepatic fibrosis, cirrhosis and HCC. The aim of this work is to detect accuracy of core antigen in Egyptian cirrhotic patients with HCV Infection treated with combination therapy of Sofosbuvir, Daclatasvir and Ribavirin as an alternative to PCR.

Patients and methods: The study included20 Egyptian treatment-naïve chronic hepatitis C patients with cirrhosis (Cirrhosis was diagnosed on ultrasound basis) on Sofosbuvir ,Daclatasvir and Ribavirin. Results Treatment with sofosbuvir plus Daclatasvir and Ribavirin for 12 weeks resulted in undetectable HCV RNA by PCR in 95% (19/20) of the patients at the end of treatment and only 5% (1/20) of the patients achieved SVR after 6 months not 3(both HCV RNA AND HCV Core Antigen tests were negative for all patients).

Conclusion: In our study there was a correlation between HCV RNA and HCV core antigen results, so HCV core antigen can be used as an alternative marker to HCV RNA in treatment of HCV infected cirrhotic patients receiving Sofosbuvir, Daclatasvir and Ribavirin. during treatment and for monitoring its efficacy.

Key words: HCV, Acte HCV, HCV RNA, PCR, HCV Core Antigen, Chronic HCV.

Introduction

Hepatitis C virus (HCV) is a major public health problem throughout the world, (Kazuaki et al., 2016). Disease progression after HCV infection depends on several factors like gender, co infection with HIV, alcohol consumption, and duration of chronic infection (Hajarizadeh, Grebely& Dore, 2013).

Acute HCV infection is asymptomatic in most cases, and only 15% of cases are symptomatic with symptoms such as fatigue, nausea, joint pain or signs of liver damage (jaundice and increased liver enzymes). The majority of adults develop chronic infection (55–85%), with 15–45% resolving infection within the first six months. Chronic hepatitis C (CHC) shows a variable clinical course, ranging from mild histopathological changes to active hepatitis and the development of hepatic fibrosis, cirrhosis and HCC. (Marc, et al., 2017)

There are estimated to be at least 185 million HCV carriers worldwide, (**Kazuaki et al., 2016**). It has been reported that about 350,000 to 500,000 people die each year due to HCV related chronic liver disease such as liver cirrhosis or HCC (**WHO 2016**).

Hepatitis C viral infection is endemic in Egypt with the highest prevelance rate in the world (**Elgharably**, et al., 2016)

With the ultimate goal of achieving a more potent strategy to control transmission of HCV in Egypt, The Ministry of Health has set up 32 specialized centers for the nationwide therapy of HCV infection. The prevalence of HCV in adults decreases (7%) (WHO, 2015).

Screening for HCV antibody (HCV Ab) facilitates HCV surveillance in the

Introduction

community (Morisco et al., 2016).

In the case of suspected acute hepatitis C or in immunocompromised patients, HCV RNA testing should be part of the initial evaluation. If anti_HCV antibodies are detected, HCV RNA should be determined by a sensitive molecular method. HCV core antigen is a surrogate marker of HCV replication and can be used instead of HCV RNA to diagnose acute or chronic infection when HCV RNA assays are not available or not affordable (core antigen assays are slightly less sensitive than HCV RNA assays for detection of viral replication) (EASL Recommendations on Hepatitis C V irus treatment, 2016).

New era for management of chronic HCV using direct antiviral agents (DAAs) started in 2013. DAAs are molecules that target specific nonstructural proteins of the virus and results in disruption of viral replication and infection. There are four classes of DAAs, all are nonstructural proteins 3/4A(NS3/4A) protease inhibitors (PIs) (e.g. simeprevir, Paritaprevir, Grazoprevir), NS5B nucleoside polymerase inhibitors (NPIs) (e.g. sofosbuvir), NS5B non-nucleoside polymerase inhibitors (e.g. Dasabuvir) and NS5A inhibitors (e.g., Daclatasvir, Ledipasvir, Ombitasvir, Elbasvir) (Poordad et al., 2012).

Testing for HCV core antigen presents a more attractive alternative owing to the lower cost and short turnaround time. HCV core antigen has been shown to be an indirect marker for HCV replication comparable to the detection of HCV RNA (Florea et al., 2014).