RESPONSE OF KEITT MANGO TREES TO DIFFERENT NITROGEN AND POTASSIUM FERTILIZATION LEVELS UNDER SHADING AND NON SHADING CONDITIONS

By

OLA ABD EL SATAR ABD EL HALIEM EMAM

B.Sc.Agric. Sc. (Horticulture), Ain Shams University, 2001 M.Sc. Agric. Sc. (Vegetable Crops), Cairo University, 2008

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Pomology)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

RESPONSE OF KEITT MANGO TREES TO DIFFERENT NITROGEN AND POTASSIUM FERTILIZATION LEVELS UNDER SHADING AND NON SHADING CONDITIONS

By

OLA ABD EL SATAR ABD EL HALIEM EMAM

B.Sc .Agric. Sc. (Horticulture), Ain Shams University, 2001 M.Sc. Agric. Sc. (Vegetable Crops), Cairo University, 2008

This thesis for Ph. D. degree has been approved by:

Date of Examination: 24 / 2 / 2018

Dr.	Ahmed Ahmed Rezk El-sayed Atawia
	Prof. of Pomology, Faculty of Agriculture, Banha University
Dr.	Ahmed Abdel Fattah Mahmoud El Gazzar
	Prof. of Pomology, Faculty of Agriculture, Ain Shams University
	rion of romotogy, ruently of rightenione, rim Shams Christop
Dr.	Ahmed Abd El-Hamid Ahmed Awad
	Associate professor of Pomology, Faculty of Agriculture, Ain Shams
	University
Dr.	Hassan Mohamed Fadel El-Wakeel
	Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams
	University

RESPONSE OF KEITT MANGO TREES TO DIFFERENT NITROGEN AND POTASSIUM FERTILIZATION LEVELS UNDER SHADING AND NON SHADING CONDITIONS

By

OLA ABD EL SATAR ABD EL HALIEM EMAM

B.Sc .Agric. Sc. (Horticulture), Ain Shams University, 2001 M.Sc. Agric. Sc. (Vegetable Crops), Cairo University, 2008

Under the supervision of:

Dr. Hassan Mohamed Fadel El-Wakeel

Prof. Emeritus of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University (principals supervisor)

Dr. Ahmed Abd El-Hamid

Associate Professor of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Abd El- Monem Ahmed Esmail

Chief Researcher, Central Laboratory of Agricultural Climate, Agricultural Research Center

ABSTRACT

Ola Abd El-Satar Abd El Haliem: Response of Keitt Mango Trees to different Nitrogen and Potassium Fertilization Levels Under Shading and non-Shading Conditions Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2018.

This study was carried out during three successive seasons of 2010/2011, 2011/2012 and 2012/2013 to investigate the effect of nitrogen and potassium fertilization treatments and shading on yield, and fruit quality of three-years-old mango (Mangifica indica L.) cv. Keitt grafted on sucary seedling rootstock planted at 2.5×2.5 meters apart grown in sandy soil under drip irrigation system with wells water . This experiment included nine levels of fertilization: T1= N 80+ K₂O 80 Kg/Fed., T2= N 80+ K₂O 100 Kg/Fed., T3= N 100+ K₂O 80 Kg/Fed., T4= N 100+ K₂O 100 Kg/Fed., T5= N 120+ K₂O 80 Kg/Fed., T6= N 120+ K₂O 100 Kg/Fed., T7= N 150+ K₂O 80 Kg/Fed., T8= N 150+ K₂O 100 Kg/Fed. and control (T9) = N 133+ K_2O 90 Kg/Fed.. The results cleared that Keitt mango trees supplied with 150 kg/feddan of nitrogen + 100 kg/feddan of potassium under shading condition significantly exhibited the highest yield (kg)/tree, number of fruit/tree, fruit weight, total sugars content and reducing sugars. Moreover, the best fruit pulp color was achieved with 80 kg/feddan of nitrogen + 80 kg/feddan of potassium under open field condition in the three studied seasons. The highest significant value of acidity and TSS were achieved by 120 kg/feddan of nitrogen + 100 kg/feddan of potassium under shading condition in the first and the third seasons. Whereas, the control treatment attained a maximum ascorbic acid content in the three growing seasons. The nitrogen, potassium, iron, zinc, calcium, magnesium, manganese, copper and cobalt in leaves were evidenced with by the treatment 150 kg/feddan of nitrogen+100 kg/feddan of potassium under shading conditition manifested the highest values through three tested seasons. Nevertheless, the highest phosphorus percentage in leaves of keitt mango trees was found by 150 kg/feddan of nitrogen + 100 kg/feddan of potassium treatment under open field condition in first and third seasons. whilst, In second season, 150 kg/feddan of nitrogen + 80 kg/feddan of potassium treatment under shading condition.

The application of 150 kg/feddan of nitrogen + 100 kg/feddan of potassium treatments under shading condition gave highest N, P, Fe, Zn, S and Mg in mango fruits pulp, except, Ca and Mn in second and third seasons, respectively, whereas, 150 kg/feddan of nitrogen + 100 kg/feddan of potassium with open field condition gave highest percent in second season.

Keywords: Fertilization, Mango cv. Keitt, Nitrogen, Potassium, Shading-yield

ACKNOWLEDGMENT

Above all else, I might want to Praise and thank profound to "ALLAH" who gave me assist and persistence to complete this work.

I like sincerely wishes to extend his deepest sense of gratitude to **Prof. Dr. Hassan El-Wakeel** Professor Emeritus of Pomology, Faculty. of Agric. Ain Shams University for his supervision, worthy advice, encourage me, orientation for expert and help during the course of this study and during preparing and reviewing the manuscript.

I am also indebted and expressing my genuine thanks and deep gratitude to **Dr. Ahmed Abd El- Hamid** Associate professor of Pomology, Faculty. of Agric. Ain Shams University for his kind supervision, valuable assistance, and preparing this manuscript.

I wish like to gratitude to **Prof. Dr. Abdel Moneim Ahmed Ismail** Central Laboratory for Agriculture Climate, Agricultural Research Center, for his supervision, great support and continued help during the preparation of this work.

I like honored to express heartfelt thanks and appreciation to his **Dr. Mohammed Abd El- Muhsen Salem** Associate professor, Aridland Agriculture Dept., Faculty of food and Agriculture, UAE Univ., Al-Alin, United Arab Emirates, for his supervision, for providing all kinds of moral support, valuable assistance and constructive suggestions during period of research work.

Many thanks are due to **Ministry of climate change and environment, Laboratory Department, Sharjah central laboratory**

Thanks are also the **staff members** of Climate modification Department research, Central Laboratory for Agricultural Climate for their encouragement and help during the course of this work.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	XIII
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Effect of nitrogen and potassium fertilization on	3
1.1. Vegetable growth	3
1.2. Flowering.	5
1.2.1. Pollen viability	5
1.3. Fruiting	5
1.4. Yield and number of fruit	5
1.4.1. Number of fruit	5
1.4.2. Yield	6
1.5. Fruit characteristics.	9
1.5.1. Physical characteristics	9
1.5.2. Chemical characteristics	11
2. Effect of nitrogen and potassium fertilization on	13
2.1. Fruit mineral content	13
2.2. Leaf mineral content	13
3. Effect of shading on	15
3.1. Vegetative growth	16
3.2. Flowering	17
3.3. Fruiting	17
3.4. Yield and number of fruit	17
3.5. Fruit characteristics	18
3.5.1 Physical characteristics	18
3.5.2 Chemical characteristics	19
4. Effect of shading on	20
4.1. Leaf mineral content	20
4.2. Fruit mineral content	20
MATERIALS AND METHODS	21

	I
RESULTS AND DISCUSSION	
4.1. Climatic circumstances	
4.1.1. Changing percentage of temperature and humidity under	
shading conditions	
4.2. Vegetative growth	
4.2.1. Tree characteristics	
4.2.1.1. Tree height increment percentage	
4.2.1.2. Trunk diameter increment percentage	
4.2.2. Leaf characteristics	
4.2.2.1. Leaf area (cm2)	
4.2.2.2. Leaf dry mater percentage	
4.2.2.3. Chlorophyll content	
4.2.3 Leaf mineral content	
4.2.3.1 Leaf nitrogen percentage	
4.2.3.2 Leaf phosphorus percentage	
4.2.3.3 Leaf potassium percentage	
4.2.3.4 Leaf calcium percentage	
4.2.3.5. Leaf magnesium percentage	
4.2.3.6. Leaf sulfur percentage	
4.2.3.7. Leaf iron (ppm)	
4.2.3.8. Leaf zinc	
4.2.3.9. Leaf Manganese (ppm)	
4.2.3.10. Leaf copper (ppm)	
4.2.3.11. Leaf cobalt (ppm)	
4.3. Flowering	
4.3.1. Blooming date and duration	
4.3.2. Panicle characteristics	
4.3.2.1. Number of Panicle/ tree	
4.3.2.2. Panicle length (cm)	
4.3.2.3. Panicle width (cm)	
4.3.3. Pollen viability percentage	

	Page
4.4. Fruiting	77
4.4.1. Initial number of fruit set/ panicle	77
4.4.2. Number of fruit retained/panicle	78
4.4.3. Fruit drop percentage	79
4.4.4 Fruits retention percentage	80
4.5. Yield and fruit quality	85
4.5.1. Number of fruit/ tree	85
4.5.2. Yield kg/tree	85
4.6. Fruit characteristics	91
4.6.1. Fruit physical characteristics	91
4.6.1.1. Fruit weight (g)	91
4.6.1.2. Fruit volume	92
4.6.1.3. Fruit length (cm)	96
4.6.1.4. Fruit width (mm)	96
4.6.1.5. Fruit thickness (mm)	97
4.6.1.6. Flesh firmness	101
4.6.1.7. Peel color (hue angle)	101
4.6.1.8. Pulp color (hue angle)	102
4.6.1.9. Peel weight	106
4.6.1.10. Pulp weight (g)	106
4.6.1.11. Seed weight (g)	107
4.6.1.12. Pulp thickness (mm)	111
4.6.2. Fruit mineral analysis	112
4.6.2.1. Nitrogen percentage	112
4.6.2.2. Phosphorus percentage	113
4.6.2.3. Potassium percentage	113
4.6.2.4. Calcium percentage	118
4.6.2.5. Magnesium percentage	118
4.6.2.6. Sulfur percentage	121
4.6.2.7. Iron (ppm)	121
4.6.2.8. Zinc (ppm)	124

	Page
4.6.2.9. Manganese (ppm)	124
4.6.2.10. Copper (ppm)	127
4.6.2.11. Nitrate and nitrite in fruits	127
4.6.3. Fruit chemical characteristics.	127
4.6.3.1. Total Soluble Solids (TSS)	127
4.6.3.2. Total Acidity	133
4.6.3.3. T.SS/Acid ratio.	133
4.6.3.4. Ascorbic acid content	134
4.6.3.5. Total sugars	135
4.6.3.6. Reducing sugars	136
4.6.3.7. Non-reducing sugars	142
4.6.3.8. Total phenols	143
4.6.3.9. Crude fiber of fruit	143
4.6.3.10. Moisture percentage	144
4.6.3.11. Flesh dry matter content	144
4.7. Hormonal status	150
4.7.1. Hormonal content in February	150
4.7.1.1. Abscisic acid content	150
4.7.1.2. Indole Acetic Acid content	152
4.7.1.3. Gibberellic acid content	152
4.7.1.4. Zeatin content	155
4.7.1.5. Kintin content	155
4.7.1.6. Benzyl adenin content	158
4.7.1.7. 2IP content	158
4.7.2. Hormonal content in October	161
4.7.2.1. Abscisic acid content	161
4.7.2.2. Indole Acetic Acid content	163
4.7.2.3. Gibberellic acid content	163
4.7.2.4. Zeatin content	163
4.7.2.5. kintin content	164
4.7.2.6. Benzyl adnin content	164

	Page
4.7.2.7. 2IP content	165
SUMMARY AND DISCUSSION	172
REFERENCES	184
ARABIC SUMMARY	1

LIST OF TABLES

No.		Page
1.	Physical and chemical properties of the experiment	
	soil.	22
2.	Maximum and minimum temperature percentages of	
	reduction under screenhouse conditions during 2011,	
	2012 and 2013 seasons.	36
3.	Relative humidity percentages of reduction under	
	screenhouse conditions during 2011, 2012 and 2013	
	seasons.	36
4.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on tree height increment % of Keitt mango trees in	
	2011, 2012 and 2013 seasons.	41
5.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on trunk diameter increment % of Keitt mango trees	
	in 2011, 2012 and 2013 seasons.	42
6.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on leaf area (cm ²) of Keitt mango trees in 2011, 2012	
	and 2013 seasons.	43
7.	Effect of nitrogen and potassium fertilization	
	treatments under open field and screenhouse	
	conditions on leaf dry mater percentage of Keitt	
	mango trees in 2011, 2012 and 2013 seasons	44
8.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on Chlorophyll content (SPAD) of Keitt mango	
	leaves in 2011, 2012 and 2013 seasons	47
9.	Effect of nitrogen and potassium fertilization	53

No.		Page
	treatments under open field or screenhouse conditions	
	on nitrogen percentage in leaves of Keitt mango trees	
	in 2011, 2012 and 2013 seasons.	
10.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on phosphorus percentage in leaves of Keitt mango	
	trees in 2011, 2012 and 2013 seasons.	54
11.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on potassium percentage in leaves of Keitt mango	
	trees in 2011, 2012 and 2013 seasons.	55
12.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on leaf calcium percentage in leaves of Keitt mango	
	trees in 2011, 2012 and 2013 seasons.	56
13.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on leaf magnesium percentage of Keitt mango trees in	
	2011, 2012 and 2013 seasons.	57
14.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on sulfur leaf percentage of Keitt mango trees in	
	2011, 2012 and 2013 seasons.	62
15.	Effect of nitrogen and potassium fertilization	
	treatments under open field and screenhouse	
	conditions on leaf iron (ppm) in leaves of Keitt	
	mango trees in 2011, 2012 and 2013 seasons.	63
16.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on leaf zinc (ppm) of Keitt mango trees in 2011, 2012	
	and 2013 seasons.	64

VIII

No.		Page
17.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on leaf manganese (ppm) of Keitt mango trees in	
	2011, 2012 and 2013 seasons.	65
18.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on leaf copper (ppm) of Keitt mango trees in 2011,	
	2012 and 2013 seasons.	66
19.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on leaf cobalt (ppm) of Keitt mango trees in 2011,	
	2012 and 2013 seasons.	67
20.	Effect of open field and screenhouse conditions on	
	blooming dates and duration of Keitt mango trees in	
	2011, 2012 and 2013 seasons.	71
21.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on number of panicle of Keitt mango trees in 2011,	
	2012 and 2013 seasons.	72
22.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on panicle length (cm) of Keitt mango trees in 2011,	
	2012 and 2013 seasons.	75
23.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on panicle width (cm) of Keitt mango trees in 2011,	
	2012 and 2013 seasons.	76
24.	Effect of nitrogen and potassium fertilization	
	treatments on pollen viability percantage of keitt	
	mango trees under open field or screenhouse	
	conditions during 2011, 2012 and 2013 seasons.	79

No.		Page
25.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on initial number of fruits/ panicle of Keitt mango	
	trees in 2011, 2012 and 2013 seasons.	81
26.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on number of fruits retained/ panicle of Keitt mango	
	trees in 2011, 2012 and 2013 seasons.	82
27.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on fruit drop % of Keitt mango trees in 2011, 2012	
	and 2013 seasons.	83
28.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on fruits retention percentage of Keitt mango trees in	
	2011, 2012 and 2013 seasons.	84
29.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on number of fruits/ tree of Keitt mango trees in	
	2011, 2012 and 2013 seasons.	87
30.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on yield (kg)/tree of Keitt mango trees in 2011, 2012	0.0
0.1	and 2013 seasons.	88
31.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on fruit weight (g) of Keitt mango trees in 2011, 2012	0.2
22	and 2013 seasons.	93
32.	Effect of nitrogen and potassium fertilization	
	treatments under open field or screenhouse conditions	
	on fruit volume of Keitt mango trees in 2011, 2012	