

Ain Shams University Faculty of Science Chemistry Department

Environmental Impact of NORM Waste Produced from Iron and Steel Industry: Egypt

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Ph.D.) in Science "Chemistry"

Presented by Rania Shokry Mohammed Ahmed

M.Sc. in chemistry (20) [†])
Nuclear and Radiological Regulatory Authority

Supervised by

Prof. Mohamed Mahmoud Mohamed Abo-Aly

Prof. of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

Prof. Soheir Tawfik El Hemamy

Chairman of Radiation Control Division at Nuclear

and Radiological Regulatory authority

2019

Ain Shams University Faculty of Science Chemistry Department

Environmental Impact of NORM Waste Produced from Iron and Steel Industry Egypt

A Thesis Submitted by

Rania Shokry Mohammed Ahmed

For the Degree of Ph.D. in Chemistry

To

Department of Chemistry
Faculty of Science
Ain Shams University

2019

Ain Shams University Faculty of Science Chemistry Department

Environmental Impact of NORM Waste Produced from Iron and Steel Industry, Egypt

Thesis supervisors	Thesis Approval
Prof. Mohamed Mahmoud Mohamed Abo-Aly	•••••
Prof. of Inorganic Chemistry, Faculty of Science,	
Ain Shams University	
Prof. Soheir Tawfik El Hemamy	••••
Chairman of Radiation Control Division at	
Nuclear and Radiological Regulatory Authority	

Head of Chemistry Department

Prof. Dr. Ibrahim H.A. Badr

Ain Shams University Faculty of Science Chemistry Department

Environmental Impact of NORM Waste Produced from Iron and Steel Industry Egypt

has been reviewed and approved by the following

	Approval
Prof. Mohamed Mahmoud Mohamed Abo-Aly	•••••
Prof. of Inorganic Chemistry, Faculty of Science,	
Ain Shams University	
Prof. Soheir Tawfik El Hemamy	•••••
Chairman of Radiation Control Division at	
Nuclear and Radiological Regulatory Authority	
Prof. Ragab Reiad Amin Al Saka	•••••
Prof. of Inorganic Chemistry, Al Nahda University	
Prof. Ahmed Mahmoud Said Daher	•••••

Prof. of Inorganic Chemistry, Nuclear Material Authority

Head of Chemistry Department

Prof. Dr. Ibrahim H.A. Badr

Acknowledgement

I am deeply thankful to god, by the grace of whom the progress and success of this work as possible.

I would like to express my deepest thanks and gratitude to my supervisor **Prof. Mohamed M. M. Abo-Aly**, prof. Inorganic chemistry, Faculty of Science – Ain Shams University for faithful help and continuous interest during this research.

It is my great pleasure to cordially express my sincere appreciation of all the efforts provided by **Prof. Soheir Tawfik El Hemamy**, Chairman of Radiation Control Division at Nuclear and Radiological Regulatory Authority for their kind Supervision, cooperation, faithful help and continuous interest during this research.

Special thanks to, **Dr Wafaa Fawzy** and **Dr Ashraf Ali** for their support and for helpful advice.

Finally, a special thank goes to my parents and to my husband and my daughters Jana and Jori and my son Youssef for supporting me.

Rania Shokry Mohamed

Subject	Page
Acknowledgement	
Contents	
List of Capture Figures.	I
List of Capture Tables	VI
LIST OF Symbols and Abbreviations	X
Abstract	XI
CHAPTER ONE	
1. INTRODUCTION	١
1.1 Background to the Study	1
1.2 Radiation	4
1.2.1 Source of Ionizing Radiation.	5
1.2.1.1 Natural Radiation Sources	5
Cosmic Rays	6
Cosmogenic Radionuclides	6
Primordial Radionuclides	7
> Uranium	7

> Thorium	10
> Potassium.	11
1.2.1.2 Man-Made Radiation Sources	12
1.3 Radionuclides in Rocks and Soil	13
1.4 Biological Effects of Radionuclide Contaminants	14
1.4.1 Radionuclide Contaminants	14
• Uranium	15
• Radium	16
• Radon	16
• Potassium	16
1.4.2 Biological Effects of Ionizing Radiation	16
Deterministic Effects	17
Stochastic Effects	18
1.5 Literature Review	18
1.6 Trace Elements	21
1.6.1 Trace Element in Soil	22
1.6.2 Anthropogenic Trace Element Inputs to Soils	23
1.6.3 Toxicity of Heavy Metals.	24
• Cadmium (Cd)	24
• Chromium (Cr)	24
• Copper (Cu)	25
• Iron (Fe)	25
• <i>Manganese (Mn)</i>	26
• Nickel (Ni)	26
• Lead (pb)	27
• Zinc (Zn)	27
• Arsenic (As)	28

1.7 Iron and Steel	28
1.7.1 Properties and Uses	29
1.7.2 Iron and Steel Production.	32
1.7.2.1 Raw Materials	32
1.7.2.2 Process Description.	32
Coke Production	33
Sinter Production	34
Iron Production	35
• Iron Preparation	37
• Steel Protection.	37
➤ Basic Oxygen Furnaces	37
➤ Electric Arc Furnace	38
Open Hearth Furnaces	39
Semifinished Product Preparation	40
1.8 Uses of Steel	40
CHAPTER TWO	
2. EXPERIMENTAL WORK	43
2.1 Sampling Techniques	43
2.2 Sampling Approaches	44
2.2.1 Cluster Sampling Designs	44
2.2.2 Random Sampling Designs	44
2.2.3 Judgmental Sampling Designs	45
2.2.4 Regular or Systematic Sampling Design	45
2.3 Collection of Environmental Samples	47
2.3.1 Soil Sampling.	47
2.3.1.1 The Trench Method.	47
2.3.1.2 Template Method	48

2.3.1.3 The Bore Core Method.	49
2.4 Sampling Locations	51
2.5 Sample Preparation for Different Techniques	56
2.5.1 Samples Preparation for HPGe detector	56
2.5.2 Soil Sample Preparation for ICP-OES.	57
2.5.2.1 Acid Digestion of Soils.	5
CHAPTER THREE	
3. Measurement Instrumentation	59
3.1 Gamma Ray Spectrometry	59
3.1.1 Emission of Gamma Rays	59
3.1.2 Radioactive Decay Series.	60
3.1.3 Interaction of Gamma Rays with Matter	62
3.1.3.1 Photoelectric Effect.	63
3.1.3.2 Compton Scattering.	65
3.1.3.3 Pair Production	67
3.2 Principles of Gamma-Ray Spectrometry	69
3.2.1 Germanium Detector	69
3.2.2 Set Up of the Used Gamma Ray Spectrometer	73
3.2.2.1 Preamplifier	75
3.2.2.2 Amplifier	75
3.2.2.3 Pulse Height Analysis and Counting Techniques	76
3.2.2.4 Shielding.	77
3.2.3 HPGe Detector Calibrations	80
3.2.3.1 Energy Calibration.	80
3.2.3.2 Energy Resolution	81
3.2.3.3 Efficiency Calibration.	82
3 3 Inductively Counled Plasma-Ontical Emission Spectrometry	92

3.3.1 Sample Introduction.	93
Nebulizers	93
3.3.2 Spray Chambers	95
3.3.3 Torches	96
3.3.4 Collection and Detection of Emission	97
CHAPTER FOUR	
4. RESULTS AND DISCUSSION	99
4.1 Results of Gamma Analysis	99
4.1.1 Analysis of Radionuclides in Raw Material and Soil Samples	99
4.1.1.1 Egyptian Iron & Steel Company	99
4.1.1.2 Ezz Dekheila Steel Company	103
4.1.1.3 Beshay Steel Company	108
4.1.1.4 Al Ezz Steel Company	113
4.1.1.5 Suez Steel Company	117
4.1.2 Analysis of Radionuclides in Waste Samples	121
4.2 Ra-226/ Th-232 Ratio of Soil Samples	128
4.3 Radiation Hazards Parameters	130
4.3.1 Radium Equivalent Activity (Ra _{eq})	130
4.3.2 Gamma Radiation Representative Level Index (I_{γ})	132
4.3.3 Absorbed Dose Rate in Air (D)	134
4.3.4 Annual Effective Dose Equivalent (AEDE)	136
4.3.5 External and Internal Hazard Indices	138
4.3.6 Annual Gonad Equivalent Dose (AGED)	140
4.3.7 Excess Lifetime Cancer Risk (ELCR)	142
4.3.8 Radiation Hazards Parameters for Waste Samples	147
4.4 Statistical Analysis	149
4 4 1 Conventional Statistical Analysis	149

4.4.1.1 Basic Statistics	150
4.4.2 Multivariate Statistical Analysis	157
4.4.2.1 Pearson Correlation Analysis	157
4.4.2.2 Cluster Analysis.	163
4.5 Results ICP-OES Analysis.	169
4.5.1 Analysis of Soil Samples by ICP-OES	169
4.5.2 Pearson's Correlation Coefficient Analysis of Heavy Metals	181
4.5.3 Pollution Assessment Methods in Soil.	183
4.5.3.1 Geo-Accumulation Index (I-geo)	183
4.5.3.2 Enrichment Factors (EF)	189
4.5.3.3 Contamination factor and Degree of Contamination	194
4.5.3.4 Pollution Load Index	195
Summary and Conclusion	204
Rafarancas	213

LIST OF CAPATURE FIGURES

FIGURE	PAGE
Figure (1.1) Uranium decay chain.	9
Figure (1.2) Thorium decay chain.	11
Figure (1.3) Potassium decay modes	12
Figure (1.4) Routes to steel production in iron and steel industry	33
Figure (1.5) Blast furnaces.	35
Figure (1.6) Basic oxygen furnace (BOF) process	38
Figure (1.7) Electric arc furnace (EAF) process	39
Figure (2.1) Cluster sampling.	46
Figure (2.2) Random sampling	46
Figure (2.3) Judgmental sampling.	46
Figure (2.4) Systematic sampling.	46
Figure (2.5) Template method.	48
Figure (2.6) Location map of the studied area indicating sampling	
points	53
Figure (3.1) Decay scheme of cobalt-60	59
Figure (3.2) Parent and daughter radionuclides at secular equilibrium	62
Figure (3.3) Predominance of the three main forms of photon	
interaction with matter	63
Figure (3.4) Mechanism of photoelectric effect.	64
Figure (3.5) An observed gamma ray spectrum of Cs-137	65
Figure (3.6) Mechanism of Compton scattering	66
Figure (3.7) Mechanism of pair production	68
Figure (3.8) Cross-section diagram of HPGe detector with liquid	
nitrogen reservoir	70
Figure (3.9) The different geometries of hyper pure germanium	
detectors and their operational energy ranges	71
Figure (3.10) The energy resolution curves of the different hyper	

	pure germanium detector types as a function of the
	incident radiation energy. 72
Figure (3.11)	Typical absolute efficiency curves for various germanium
	detector types as a function of the incident radiation
	energy
Figure (3.12)	Hyper pure germanium detector with accompanying
	lead castle and data acquisition system
Figure (3.13)	Schematic of electronic setup
Figure (3.14)	Typical preamplifier and amplifier (bipolar and unipolar)
	output signal and logic pulse
Figure (3.15)	Basic architecture of a Multi Chanel Analyzer
Figure (3.16)	Shielding hyper pure germanium detector
Figure (3.17)	Energy calibration curve for hyper pure germanium
	gamma-ray spectrometer
Figure (3.18)	Energy resolution of the hyper pure germanium detector 82
Figure (3.19)	Location of peaks for the radionuclides U-238 series,
	Th-232 series and K-40
Figure (3.20)	Relative efficiency of Ra-226 and its daughter gamma
	lines
Figure (3.21)	Gamma-ray spectrum of mixed standard source for
	efficiency calibration of hyper pure germanium
	gamma-ray spectrometer
Figure (3.22)	Full peak efficiency curve of hyper pure germanium
	gamma-ray spectrometer
Figure (3.23)	Major components and layout of a typical ICP-OES
	instrument. 93
Figure (3.24)	Schematic diagrams of three types of pneumatic
	nebulizer: (a) the concentric nebulizer; (b) the cross

95
96
97
98
02
04
07
09
12
14
16
18
20
22
64

Figure (4.12) Dendrogram of Ezz Dekheila steel.	165
Figure (4.13) Dendrogram of Beshay steel.	166
Figure (4.14) Dendrogram of El Ezz steel.	167
Figure (4.15) Dendrogram of Suez steel.	168
Figure (4-16) Distribution of Cd average concentrations between	
studied companies	171
Figure (4-17) Distribution of Cr average concentrations between	
studied companies	172
Figure (4-18) Distribution of Cu average concentrations between	
studied companies	173
Figure (4-19) Distribution of Fe average concentrations between	
studied companies	174
Figure (4-20) Distribution of Mn average concentrations between	
studied companies	175
Figure (4-21) Distribution of Ni average concentrations between	
studied companies	176
Figure (4-22) Distribution of Pb average concentrations between	
studied companies	177
Figure (4-23) Distribution of Zn average concentrations between	
studied companies	178
Figure (4-24) Distribution of As average concentrations between	
studied companies	179
Figure (4.25) The average geo-accumulation index of heavy metals	
in soils	187
Figure (4.26) The average EF of heavy metals in soils	193
Figure (4-27) The average C_f^i , C_{deg} and PLI values for heavy metals	
in some soils	201