

Magnetic Resonance Imaging Spectroscopy In Diagnosis of Multiple Sclerosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Diagnostic and Intervential Radiology

$\mathcal{B}y$ Ahmed Mohammed Rezk Metwaly M.B.B.c.h

Supervised By

Prof. Dr. Mohamed El-Gharib Abu Al-Maati

Prof of Diagnostic and Intervential Radiology Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Mari Yafath Twadrous

Assistant Prof of Diagnostic and Intervential Radiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed El-Gharib Abu Al-Maati,** Prof of Diagnostic and Intervential Radiology Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. Mari Wafath Twadrous, Assistant Prof of Diagnostic and Intervential Radiology Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work

Ahmed Mohammed Rezk Metwaly

List of Contents

Title Pag	ge No
List of Tables	5
List of Figures	6
List of Abbreviations	9
Introduction	1
Aim of the Work	14
Review of Literature	
Anatomical Background	15
Physical Concepts of Magnetic Resonance Spectroscopy	22
Pathophysiology of Multiple Sclerosis	
Clinical Picture and Diagnosis of Multiple Sclerosis	
Imaging of Multiple Sclerosis	47
 Role of Magnetic Resonance Spectroscopy in Multiple Sclerosis 	58
Patients and Methods	76
Results	83
Case Presentation	90
Discussion	103
Summary	108
Conclusion	112
Recommendations	113
References	114
Arabic Summary	—

List of Tables

Table No	Title	Page No
Table (1):	Metabolites displayed in proton maresonance spectroscopy and significance	their
Table (2):	The 2017 McDonald Criteria for diagramultiple sclerosis in patients with an at onset.	attack
Table (3):	2017 McDonald criteria for diagnormultiple sclerosis in patients with a course characterized by progression onset (primary progressive mesclerosis).	disease n from nultiple
Table (4):	Expanded Disability Status Scale (EDS	SS)46
Table (5):	Comparison table between TDLS and grade gliomas with the contralateral rappearing white matter	l high- normal-
Table (6):	Sex distribution of the studied group.	
Table (7):	MS clinical subtypes.	
Table (8):	Clinical presentation data of the studicases	ied MS
Table (9):	Comparison of metabolite levels of white matter, NAWM and	control regions
	surrounding acute and chronic lesions.	
Table (10):	Sensitivity, specificity and predictive values of 1H-MRS and c-MR	

List of Figures

Fig No	Title	Page No
Fig. (1):	A diagram showing the principle sy the arcuate fibers	
Fig. (2):	Association Fibers coronal view	17
Fig. (3):	Horizontal section of the right hemisphere showing the relationsh different parts of the internal capsule	ips and
Fig. (4):	The corpus Callosum	20
Fig. (5-A):	Unsuppressed water proton spectrum of brain tumor	
Fig. (5-B):	Water suppressed proton spectrum of a hur tumor	
Fig. (6):	Diagrammatic illustration of the orthogonal SV slice selective pulse resulting in the signal collection or the rectangular region of interest	es (left) nly from
Fig. (7):	Proton 1D, 2D, 3D CSI: Localizated columns slices and voxels	ation to
Fig. (8):	Diagram of proton MR spectrum of a brain	
Fig. (9):	Course of Multiple sclerosis	41
Fig. (10):	Axial magnetic resonance imaging (Most and State 1) and the second patient with relapsing remultiple sclerosis (MS) showing periventricular lesions	emitting multiple
Fig. (11):	Axial MRI of a 46 year old paties secondary progressive MS showing left sided peri-ventricular lesion whyperintense with (A) T2 weighted and hypointense with (B) T1 winaging ("black hole")	a large which is imaging veighted

List of Figures Cont...

Fig No	Title	Page No
Fig. (12):	T1-weighted images showing pre (lef & post contrast enhancement of lesion image)	on (right
Fig. (13):	Diffusion tensor imaging in MS	
Fig. (14):	MTR in normal appearing brain (NABT) in MS	tissue
Fig. (15):	PET imaging in MS	57
Fig. (16):	Axial MR image, 2100/30 (TRITE patient with multiple sclerosis depiction left cerebral hemisphere	ts lesion
Fig. (17):	Voxel localized over a lesion from signal" group in the same patient	the "low
Fig. (18):	MRS spectra from the frontal appearing white matter volumes of intecontrol subject (A) a relapsing—r multiple sclerosis patient (B) and a se	erest of a remitting recondary
Fig. (19):	progressive multiple sclerosis patient (Axial T2-weighted MRI from a CIS depicting a voxel placed over an NAWM	patient, area of
Fig. (20-A):	Images in a 50-year-old patient with biops tumefactive demyelinating lesion	sy-proven
Fig. (20-B):	Images in an 81-year-old patient with a h mixed glioma	igh-grade
Fig. (21):	Volume of interest and corresponding	spectra72
Fig. (22):	WML and MS plaques differed significant NCWM. WML and MS plaques were retheir t-NAA concentration	educed in
Fig. (23):	Sex distribution of the studied group.	83
Fig. (24):	Chart showing distribution of Cases	84
Fig. (25):	Clinical presentation among studied of	eases85

List of Figures Cont...

Fig No	Title	Page No
Fig. (26):	Accuracy analysis of MRS and co	
Fig. (27):	A,B) Case 1	
Fig. (28):	A,B,C) Case 2	
Fig. (29):	A,B) Case 3	
Fig. (30):	A,B,C) Case 4	
Fig. (31):	A,B) Case 5	97
Fig. (32):	A,B) Case 6	
Fig. (33):	A,B,C) Case 7	99
Fig. (34):	A.B) Case 8	

List of Abbreviations

Full term Abb ¹H-MRS Proton magnetic resonance imaging ADC Apparent diffusion coefficient ADEM Acute disseminated encephalomyelitis CADASIL..... Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy CDMS Clinically definite multiple sclerosis CHESS...... Chemical shift water suppression Cho..... Choline CIS Clinically isolated syndromes C-MRI Conventional magnetic resonance imaging CNS...... Central nervous system Cr.....Creatine CSE Coventional spin echo CSF Cerebrospinal fluid CSI Chemical shift imaging CT Computed tomography DT Diffusion tensor DTI..... Diffusion tensor imaging DW Diffusion weighted DWI...... Diffusion weighted imaging EDSS Expanded Disability Status Scale FA Fractional anisotropy FDG Flurodeoxyglucose FLAIR..... Fluid attenuated inversional recovery fMRI...... Functional magnetic resonance imaging FSE Fast spin echo GABA...... Gamma-amino butyric acid

List of Abbreviations Cont...

Abb	Full term
Gd	Gadalinium
	Glutamate-glutamine
HA	_
Lac	
	Lipid Mean diffusion
Mi	_
	Magnetic resonance
	Magnetic resonance imaging
	Magnetic resonance spectroscopy
	Magnetization transfer imaging
	Magnetization transfer ratio
	N-acetylaspartate
	Normal-appearing gray matter
	Normal-appearing white matter
	National multiple sclerosis society
PD	
	Positron emission tomography
	Progressive multifocal leucoencephalopathy
Ppm	
PPMS	Primary progressive multiple sclerosis
PRESS	Point resolved spectroscopy
PRMS	Progressive relapsing multiple sclerosis
RRMS	Relapsing remitting multiple sclerosis
SD	Standard deviation
SE	Spin echo
SLE	Systemic lupus erythematosus
SPECT	Single Photon Emission Computerized Tomography

List of Abbreviations Cont...

Abb	Full term	
SPMS	Secondary progressive multiple sclerosis	
STEAM	Stimulated echo acquisition mode	
TDLS	Tumifactive demyelinating lesions	
TE	Time of echo	
TM	Maximum Time	
TR	Time of repetition	
VOI	Volume of interest	
WBNAA	Whole brain N-acetyl aspartate	
WML	White matter lesions	

Introduction

ultiple sclerosis (MS) is a relatively common acquired chronic relapsing demyelinating disease involving the central nervous system, and is the second most common cause of neurological impairment in young adults after trauma. Characteristically, and by definition, multiple sclerosis is disseminated not only in space (i.e multiple lesions in different regions of the brain) but also in time (i.e. lesions occur at different times) (*Sarbu et al.*, 2016).

Multiple sclerosis (MS) is a chronic idiopathic disease of the central nervous system (CNS). Inflammation, demyelination and axonal injury are most typical pathological features, but their underlying pathogenetic mechanisms are still unclear (*Barnett et al.*, 2009; *Lassmann et al.*, 2007).

In most of the cases MS starts between adolescence and the sixth decade, with a peak at approximately 35 years of age (*Brust*, 2006) and follows a relapsing-remitting course with clear defined relapses with no apparent clinical deterioration between the relapses. Each MS patient follows his/her individual disease course (*Gilmore et al.*, 2010).

MR is the most sensitive technique for detecting MS lesions and has proved to be an important paraclinical tool for diagnosing MS and monitoring therapeutic trials (American Journal of Neuroradiology, 2006).

Conventional MRI detects brain abnormalities with great sensitivity but does not provide specific information about the pathology underlying the detected abnormalities. This could be explained in part by the non specificity of T2W hyperintensity which can rise from edema, mild (reversible) or severe (irreversible) chronic demyelination, inflammation, axonal loss and gliosis (Hock et al., 2013).

These short comings prompted using additional MR techniques such as diffusion weighted imaging (DWI), magnetization transfer imaging (MTI), functional MRI and proton magnetic resonance spectroscopy (MRS) (Öz et al., 2014).

MRS permits the invivo study of certain cerebral metabolites thus it offers the possibility of greater pathological specificity in lesional areas of MS as well as in normal appearing white matter and even in the gray matter (Naryana et al., 2005).

AIM OF THE WORK

This work aims to highlight the role of magnetic resonance spectroscopy in diagnosis and evaluation of MS patients, staging of disease activity and monitoring of treatment response.

Chapter 1

ANATOMICAL BACKGROUND

White matter tracts of the brain:

hite matter is composed of bundles(axons which are ensheathed with mylein), which connect various gray matter areas (the locations of nerve cell bodies) of the brain to each other, and carry nerve impulses between neurons. Myelin acts as an insulator, which allows electrical signals to jump, rather than coursing through the axon, increasing the speed of transmission of all nerve signals (*Klein et al., 2007*).

White Matter (WM) Fiber Classification:

White Matter (WM) fiber tracts have been classified as follows: Association fibers, Projection fibers and Commissural fibers (*Linnman et al.*, 2012).

Association fibers: interconnect cortical areas in each hemisphere.

Projection fibers: interconnect cortical areas with deep nuclei, brain stem, cerebellum, and spinal cord.

Commissural fibers: interconnect similar cortical areas between opposite hemispheres.