

A pharmaceutical study on photodynamic therapy of skin diseases

A Thesis submitted
By

Mai Shaaban Abdel Aziz Tolba

Bachelor of Pharmaceutical Science, 2009, Ain Shams University
Teaching assistant, Department of Pharmaceutics, Faculty of Pharmacy, Ain Shams
University

For the partial fulfillment of the requirements for the Master Degree of Pharmaceutical Sciences (Drug Technology)

Under the supervision of

Prof. Dr. Omaima Ahmed Sammour

Professor of Pharmaceutics and
Industrial Pharmacy
Faculty of Pharmacy, Ain Shams
University

Prof. Dr. Maha Fadel MohamedProfessor of Pharmaceutics

National institute of laser sciences

Cairo University

Dr. Maha Nasr Sayd

Associate Professor of Pharmaceutics and Industrial pharmacy
Faculty of Pharmacy
Ain Shams University

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics and Industrial pharmacy

<u>Acknowledgment</u>

First and foremost thanks to **Allah** by the grace of whom this work was achieved.

To my dear supervisors, these written words are a small token of appreciation for all of the hard work that you did to keep things in perspective.

I would like to express my deepest appreciation to *Prof. Dr. Omaima Sammour*, Professor of Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her instructive supervision, precious advice and supportive encouragement throughout the development of this work.

I am also grateful to *Prof. Dr. Maha Fadel*, Professor of Pharmaceutics, National institute of laser sciences, Cairo University, for her great help, support and guidance, especially in the photostability study.

I would also like to express my sincere gratitude and thanks to my supervisor *Dr. Maha Nasr*, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, for her great effort that she exerted throughout my thesis. Her guidance helped me a lot in all the time of work and writing of this thesis. She provided me with great knowledge, valuable suggestions and solutions to every trouble I fell into

during this work. This work wouldn't have been possible without her supervision and her keen interest. I am gratefully indebted to her.

I would also like to thank *Prof. Dr. Abeer Ateya* professor of Dermatology, Faculty of Medicine, Cairo University, for her kind help in the clinical study part in this thesis.

I am deeply thankful to *Gattefosse* and *Cargill* Pharmaceutical Companies for supplying some of the pharmaceutical ingredients used in this work.

A very special gratitude goes out to all my *colleagues* in the department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, for helping and encouraging me throughout the whole thesis.

Finally, I must express my very profound gratitude to my mother, my father, my brothers, my sister and my husband for providing me with continuous encouragement and support throughout the years of work in this thesis.

List of Contents

Item	Page
List of abbreviations	I
List of tables	V
List of figures	VIII
Abstract	XIV
Introduction	1
Scope of work	35
Chapter I: Preparation and characterization of bergamot oil NLCs	
Introduction	36
Experimental	38
Materials	38
Equipment	39
Methodology	40
I- Spectrophotometric assay of bergamot oil	40
1. UV scanning of bergamot oil in phosphate buffer solution containing 5 % SLS and in tetrahydrofuran	40
2. Construction of calibration curve of bergamot oil in phosphate buffer solution containing 5 % SLS and in tetrahydrofuran	40
II-Preparation of bergamot oil NLCs	
a. High shear homogenization method	41
b. Solvent diffusion method	43
III- Characterization of the prepared BO NLCs	44

1. Particle size and zeta potential measurement	44
2. Physical stability study	44
3. <i>In vitro</i> release study	44
4. Differential scanning calorimetry	45
5. Viscosity measurements	46
6. <i>In vitro</i> photostability study	46
7. Transmission electron microscopy	47
IV- Statistical analysis	47
Results and Discussion	48
I- Spectrophotometric assay of bergamot oil	
1. UV scanning of BO in phosphate buffer solution containing 5 % SLS and in tetrahydrofuran	48
2. Construction of calibration curve of BO in phosphate buffer solution containing 5 % SLS and in tetrahydrofuran	48
II- Preparation of BO NLCs	53
III- Characterization of the prepared BO NLCs	55
1. Particle size and zeta potential measurements of BO NLCs	55
1-1. Effect of solid lipid type on the particle size of BO NLCs	57
1-2. D-Optimal custom design model for the effect of method of preparation, emulsifier and coemulsifier types on the particle size of Precirol-based NLCs	58
1-2.1. Effect of method of preparation on the particle size of BO NLCs	59

Equipment	93
Materials	93
Experimental	91
Introduction	91
Chapter II: Preparation and characterization of BO loaded spanlast	tics
Conclusions	88
8. Transmission electron microscopy examination	86
7. <i>In vitro</i> photostability study	82
6. Determination of the viscosity of BO NLCs	81
5. Differential scanning calorimetry	78
4. <i>In vitro</i> release of BO from NLCs	75
3. Physical stability study	73
2-3. Effect of coemulsifier presence on the zeta potential of BO NLCs	71
2-2. Effect of emulsifier type on the zeta potential of BO NLCs	70
2-1. Effect of solid lipid type on the zeta potential of BO NLCs	69
2. Zeta potential measurements of the prepared BO NLCs	69
1-2.3. Effect of coemulsifier presence on the particle size of BO NLCs	65
1-2.2. Effect of emulsifier type on the particle size of BO NLCs	60

Methodology	94
I- Preparation of BO-loaded spanlastics	94
II-Characterization of the prepared BO-loaded spanlastics	95
1. Particle size and zeta potential measurement	95
2. Physical stability study	95
3. <i>In vitro</i> release study	96
4. Differential scanning calorimetry	96
5. Viscosity measurements	96
6. Elasticity measurements	97
7. <i>In vitro</i> photostability study	97
8. Transmission Electron Microscopy	98
III- Statistical analysis	98
Results and Discussion	99
I- Preparation of BO-loaded spanlastics	99
II-Characterization of the prepared BO-loaded spanlastics	100
Factorial design experiment	100
1-1. Effect of formulation variables on the particle size of spanlastics	100
1-2. Zeta potential measurements	105
2. Physical stability study	109
3. <i>In vitro</i> release of BO from spanlastics	112
4. Differential scanning calorimetry (DSC)	115

5. Determination of the viscosity of BO-loaded spanlastics dispersions	117
6. Elasticity measurements	118
7. In vitro photostability study	119
8. Transmission electron microscopy examination	122
Conclusions	125
Chapter III: <i>In vivo</i> and clinical evaluation of the selected Bergamot loaded NLCs and spanlastics for photodynamic treatment of vitiligo	
Introduction	127
Experimental	130
Materials	130
Equipment	130
Methodology	131
I- In vivo study	131
1- Experimental animals	131
2- Histopathological examination following animal skin photosensitization	131
II- Clinical proof of efficacy of the selected formulae in the treatment of vitiligo	133
1- Design of the clinical study	133
2- Clinical response	133
III- Statistical analysis	135
Results and Discussion	136
I- Histopathological alterations following rat skin photosensitization	136
II- Clinical proof of efficacy of selected NLCs and	142

spanlastics formulations in PDT of vitiligo	
Conclusions	156
Recommendations and Future perspective	157
Summary	158
References	167
Appendix	196
Arabic Summary	١

List of Abbreviations

Symbol	Abbreviation
μW	Microwatt
5-GOP	5-geranoxypsoralen
5-MOP	5-methoxypsoralen
8-MOP	8-methoxypsoralen
AKs	Actinic keratoses
ANOVA	Analysis of variance
aPDT	Antimicrobial photodynamic therapy
ВО	Bergamot oil
BO NLCs	Bergamot oil-nanostructured lipid carriers
Cor	Correlation
сР	Centipoise
DSC	Differential scanning calorimetry
GRAS	Generally regarded as safe
HLB	Hydrophilic lipophilic balance
Нр	Hematoporphyrin
HPHs	High pressure homogenizers
hr	Hour
HSH	High shear homogenization
I	Irradiance

Symbol	Abbreviation
J	Joule
$\lambda_{ m max}$	The wavelength of maximum absorbance
LNPs	Lipid nanoparticles
MBEH	Monobenzyl ether of hydroquinone
MCT	Medium chain triglyceride
MEL	Monochromatic excimer light
min	Minute
ml	Milliliter
MPa	Megapascal
mV	Millivolt
Mwt	Molecular weight
nBCC	Nodular basal cell carcinoma
NB-UVB	Narrowband-ultraviolet B
NLCs	Nanostructured lipid carriers
nm	Nanometer
PB	Phosphate buffer
PDI	Polydispersity index
PDT	Photodynamic therapy
PEG	Polyethylene glycol
P-NBUVB	Psoralen + Narrowband ultraviolet B
PQPs	Perylenequinone pigments

Symbol	Abbreviation
PS	Plurol Stearique® WL 1009
PSs	Photosensitizers
PUVA	Psoralen + ultraviolet A
PUVB	Psoralen + ultraviolet B
R ²	Coefficient of determination
RI	Recrystallization index
rpm	Revolution per minute
S.D.	Standard deviation
sBCC	Superficial basal cell carcinoma
SC	Stratum corneum
SCCIS	Squamous cell carcinoma in situ
SD	Solvent diffusion
sec	Second
SG	Stratum granulosum
SLNs	Solid lipid nanoparticles
SLS	Sodium lauryl sulphate
SP	Stratum spinosum
$t_{1/2}$	Half-life time
T80	Tween 80
Тс	Crystallization temperature
TEM	Transmission electron microscope

Symbol	Abbreviation
THF	Tetrahydrofuran
TMP	4-, 5-, 8-trimethyl psoralen
UV	Ultraviolet
UVA	Ultraviolet A
UVB	Ultraviolet B
ZP	Zeta potential

List of Tables

Table No.	Table Name	Page
Table (1)	Composition of BO NLCs prepared using HSH method	42
Table (2)	Composition of BO NLCs prepared using SD method	43
Table (3)	Calibration data for the spectrophotometric determination of BO in PB solution (PH 7.4) with 5% SLS at 292 nm	50
Table (4)	Calibration data for the spectrophotometric determination of BO in THF at 292 nm	51
Table (5)	Particle size, polydispersity index and zeta potential of BO NLCs prepared using HSH method	56
Table (6)	Particle size, polydispersity index and zeta potential of BO NLCs prepared using SD method	57
Table (7)	Effect of three months storage at 2-8°C on the particle size, PDI and zeta potential of T80 stabilized NLCs prepared by HSH and SD methods	73
Table (8)	In vitro release data of the selected BO NLCs	76
Table (9)	Melting peaks, enthalpies and crystallinity indices of Precirol ATO 5, Compritol 888 ATO, D6 and H12	81
Table (10)	The degradation half-life, $t_{1/2}$, degradation rate constant, K , and R^2 values of BO in THF solution and BO incorporated in D6 and H12	86
Table (11)	Factors and levels used in the factorial design for the preparation of BO-loaded spanlastics dispersions	94

Table No.	Table Name	Page
Table (12)	Composition of BO-loaded spanlastics dispersions for the factorial design	95
Table (13)	Vesicle size, polydispersity index and zeta potential of BO-loaded spanlastics	101
Table (14)	ANOVA for particle size response of BO-loaded spanlastics according to the factorial design	103
Table (15)	ANOVA for ZP response of BO-loaded spanlastics according to the factorial design	107
Table (16)	Effect of one month storage at 2-8°C on the vesicle size, PDI and zeta potential of BO-loaded spanlastics	110
Table (17)	In vitro release data of the selected BO-loaded spanlastics	113
Table (18)	The degradation half-life, $t_{1/2}$, degradation rate constant, K , and R^2 values of BO in THF solution and BO loaded in S6	122
Table (19)	Animal groups for the topical photodynamic therapy	132
Table (20)	Demographic data of group A patients receiving NB-UVB light	142
Table (21)	Demographic data of group B patients receiving S6 formulation + NB-UVB light	143
Table (22)	Demographic data of group C patients receiving D6 formulation + NB-UVB light	144
Table (23)	Clinical response of group A patients receiving NB-UVB light	145