

Faculty of women for Art, Science and Education, Ain Shams University

Approval sheet

Student Name: Jemila Mussa Ali Abbi.
"M.Sc.Degree in Nuclear Physics, 2009".

Thesis Title: "Assessment of Natural Radioactivity Levels and Rare Earth Elements in Gandula Area at

Al –Gabale Al -Akhdar (LIBYA)"

Submitted in Partial Fulfillment for the Ph.D. Degree in Nuclear Physics.

Supervisors Committee:

Al-Mokhtarm University, Libya.

•	Prof. Dr. Amany Taha Sroor Prof. of Nuclear Physics, Faculty of women, Ain Shams University.
•	Prof. Dr. Nadia Walley El-Dine Prof. of Nuclear Physics, Faculty ofwomen Ain Shams University.
•	Prof. Dr. Samia M. El-Bahi
	Prof. Dr. Hamad. M Adrees Hasan – – – – – – – – – – – – eof. of Analytical and inorganic chemistry, Faculty of Science, Omar

كلية البنات للأداب والعلوم والتربية قسم الفيزياء

صفحة الموافقة اسم الطالب: جميلة موسى علي ابي

عنوان الرسالة: " تقدير مستويات النشاط الإشعاعي الطبيعي والعناصر الأرضية النادرة في منطقة قندولة ـ الجبل الأخضر (ليبيا)"

اسم الدرجة: دكتوراه الفلسفة في العلوم (فيزياء نووية)

لجنة الإشراف

 ا ماني طه سرور الماني طه سرور الفيزياء النووية قسم الفيزياء كلية البنات جامعة عين شمس
 ا. ح./ فاحية السيح ولي الحين – – – – – – السيح ولي الحين المستاذ الفيزياء النووية قسم الفيزياء علية البنات جامعة عين شمس
ا . ح ./ سامية محمد البمي – – – – – – – – – – – ا
أستاذ الفيزياء النووية - قسم الفيزياء كلية البنات جامعة عين شمس الفيزياء كلية البنات جامعة عين شمس الموريس حسن
أستاذ في الكيمياء التحليلية وغير عضوية- كلية العلوم- جامعة عمر المختار- ليبيا
تاريخ البحث الدراسات العليا
ختم الإجازة أجيزت الرسالة بتاريخ / /
موافقة مجلس الكلية موافقة مجلس الجامعة
1 1

"Assessment of Natural Radioactivity Levels and Rare Earth Elements in Gandula Area at Al –Gabale Al -Akhdar (LIBYA)"

 $\mathcal{B}y$

Jemila Mussa AlI Abbi

Thesis

Submitted in Partial Fulfillment for the Ph.D.

Degree in Nuclear Physics

To
Physics Department
Faculty of women for Art, Science and
Education, Ain Shams University

M.Sc. Degree in Nuclear Physics, 2009

2018

"Assessment of Natural Radioactivity Levels and Rare Earth elements in Gandula Area at

Al -Gabale Al -Akhdar (LIBYA)"

Jemila Mussa Ali Abbi

Thesis Submitted in Partial Fulfillment for the Ph.D. Degree in Nuclear Physics

Physics Department Faculty of women for Art, Science AndEducation, Ain Shams University

Supervisors

Prof.Dr. Amany Taha Sroor Prof. of Nuclear physics Faculty of women Ain Shams University

Prof. Dr. Samia M. El-Bahi women Ain Shams University Prof. Dr. Nadia ElsayedWalley E l-Dine Fouad Prof. of Nuclear physics Faculty of women Ain Shams University

Prof. Dr. Hamad. M Adrees Hasan Prof. of Nuclear physics Faculty of Prof. of Analytical and Inorganic Chemistry, Faculty of Science, Omar Al-Mokhtar University, Libya

Faculty of women for Art, Science and Education, Ain Shams University

Approval sheet

Student Name: Jemila Mussa Ali Abbi.

"M.Sc.Degree in Nuclear Physics, 2009".

Thesis Title: "Assessment of Natural Radioactivity Levels and Rare Earth Elements in Gandula Area at

Al –Gabale Al -Akhdar (LIBYA)"

Submitted in Partial Fulfillment for the Ph.D. Degree in Nuclear Physics.

Supervisors Committee:

•	Prof.Dr. Amany Taha Sroor Prof.of Nuclear Physics, Faculty of women ,Ain Shams University.
•	Prof. Dr. Nadia Walley El-Dine
	Prof.of Nuclear Physics, Faculty of women Ain Shams University.
•	Prof. Dr. Samia M. El-Bahi
	Prof.of Nuclear Physics, Faculty of women Ain Shams University.
3	Prof. Dr. Hamad. M. Adrees Hasan
Гr	of. of Analytical and inorganic chemistry, Faculty of Science, Omar
al	-Mokhtarm University, Libya.

Acknowledgement

Thanks to Allah and him alone, I should thank him for helping and giving me the strength to complete this work.

Special thanks to my mother land Ethiopia and second country Libya,

Words cannot describe how I feel, special thanks to the person who took my own hands and existed next to me during my works.

I would like to express my gratitude to my supervisor **prof**.

Dr. Amany Taha Sroor Professor of Nuclear physics, Ain Shams University, Faculty of Women for Arts, Science and Education. Who provided me with her illuminating insight and through assistance that greatly helped accomplish study.

Particular gratitude and heartily thanks to Prof. Dr.Nadia El_sayed Walley El-DineProfessor of Nuclear physics, Ain Shams University, Faculty of Women for Arts, Science and Education.

For the excellent supervision, stimulating suggestions, fruitful discussion and valuable revision.

I wish to express my sincere thanks and gratitude to Prof. Dr. Samia.M. El-Bahi, Professor of Nuclear physics, Ain Shams University, Faculty of Women for Arts, Science and Education. For her supervision, honest guidance, continuous encouragement

My special thanks and deep gratitude to Prof. Dr. Hamad Mohamed Adrees Hasan Professor of Analytical and inorganic chemistry, Faculty of Science, Omar Al-Mokhtar University, Libya. This thesis is dedicated with greatest affection and love to my caring parents my mother, and my father for his endless love and encouragement, and my sibling Mohamed, Ali and Sara for their continuous caring and support.

ABSTRACT

The aim of this thesis is to evaluate the activity concentrations of naturally occurring in the environment associated with the ²³⁸U and ²³²Th decay chains and the long-lived natural occurring radionuclide 40K in environmental samples. The samples were collected from different locations around Gandula region (norh eastran side of Libya) to elevate natural radioactivity. The analysis of the samples was done by using high purity germanium detectors (HPGe). The analysis demonstrates that the measured average activity concentrations for the soil samples of ²²⁶Ra, ²³⁸U, ²³²Th and ⁴⁰K were 66.32, 59.52, 56.07 and 517.92 Bq.Kg⁻¹,respectivly. While the average activity concentrations for rock samples of ²²⁶Ra, ²³⁸U, ²³²Th and ⁴⁰K were 26.01, 23.39, 25.13 and 100.97 Bq.Kg⁻¹, respectively. On the other side the average activity concentrations of plant samples are 106.22, 95.49, 143.22 and 1255.82 Bq.Kg⁻¹ for the above elements, respectively. While the average cocentrations for water samples of ²²⁶Ra, ²³⁸U, ²³²Th and ⁴⁰K are 19.24, 16.78, 19.32 and 102.78 Bq.L⁻¹ respectively. It was observed that the highest activity concentration values determined among the soil, plant and water samples are higher than the worldwide average as reported by the UNSCEAR 2000. The radium equivalent activity (Ra_{ea}) in all samples were determined, we found in soil rock, plant and water samples are ranged between 125.65 to 233.51 Bq.Kg⁻¹, 56.50 to 89.29 Bq.Kg⁻¹, 244.05 to 754.01 Bq.Kg⁻¹ and 44.01 to 60.26 Bq.Kg⁻¹, respectively. The values of external hazard index, gamma radiation level index (I_{γ}) , I- alpha (I_{α}) are close tounity for all samples under investegated. The value of the absorbed dose rate, annual effective dose and cancer risk factor in the all samples were also determined.

On the other hand, the chemical analyzes were carried out for all samples using the flame photometer and atomic absorption to estimate the heavy elements in the samples. The element which selected in this study including (Na, Ca and K) beside (Cu, Fe, Zn, Mn and Pb), the contents of the studied major elements in the samples of (soil, rock, plant and water), recorded the high value of Na and Ca in water samples with average concentration of (154.08 and 84.4 ppm), respectively, and the high average concentrations of potassium was recorded in the plant samples (10.83 ppm). On the other side

the high concentrations of Cu and Pb were recorded in rock samples with average (1.03 and 0.77 ppm). The results also recorded that the high concentrations of iron (Fe) and manganese (Mn) was in soil samples (65.76 and 2.97 ppm), whereas the average values of, Znwere (1.36 ppm) in water samples. The result of (XRF) showed that the contents of the metal oxides in soil samples were the following trend: $Fe_2O_3 > CaO > SiO_2 > Al_2O_3 > other oxides, whereas the trend order of the (<math>XRF$) of rock samples was as following: $CaO > Fe_2O_3 > SiO_2 > Al_2O_3 > other oxides$. The trace elements in soil samples showed the concentrations of Ni, Cu, Zn, Sr, Zr and Cr and ranged as following: (0.15–0.27), (0.13–0.85), (0.65–0.81), (0.84–5.16), (2.07–16.32) and (0.58–1.03) ppm,respectively.On the other side the rock samples contain the concentrations of Cu, Zn, Sr, Zr and Cr and ranged as following: (0.71–1.20), (0.39–0.95), (0.16–0.35), (0.68–0.75) and (0.10–0.38) ppm, respectively.

CONTENTS

Acknowledgment

Abstract

Contents

List of Figures

List of Tables

CHAPTER ONE : THE ORIGIN OF NATURAL RADIOACTIVE DECAY		
AND LITERATURE REVIEWS		
Title		Page
1.1. Introd	luction	1
1.2. Envir	onmental and Natural Radioactivity	3
1.2.1.	Ionizing Radiation and Its Effects On The Human Body	4
1.2.2.	Cosmogenic Radionuclides	4
1.2.3.	Primordial Radionuclides	5
1.2.4.	Series of Radionuclides	5
1.2.4.1.	The uranium (238 U) Series	6
1.2.4.2.	The Actinium (235 U) Series	7
1.2.4.3.	The Thorium (232 Th) Series	7
1.2.4.4.	The Neptunium (237 Np) Series	8
1.2.5.	Non Series Radionuclides	9
1.2.5.1.	Potassium (⁴⁰ K)	9
1.2.5.2.	Rubidium (⁸⁷ Rb)	10
1.3. Natural Radium Isotopes		10
1.4. Natural Radon Isotopes		11
1.5. Artifi	cial Sources of Radiation	12
1.6. Literature Reviews		13
1.7. Objectives of The Research		21
1.8. Geological Setting of Gandula Area in Libya		22
	CHAPTER TWO: NUCLEAR INTERACTIONS	
2.1. Types of Radiation 2		
2.1.1.	Alpha Particles (α)	25

Title		Pag
2.1.2.	Beta Particles (β)	26
2.1.3.	Gamma Rays (γ)	27
2.2. Gamı	na Ray Interaction With Matter	28
2.2.1.	Photoelectric effect	29
2.2.2.	Compton Scattering	29
2.2.3.	Pair Production	30
2.3. R adic	pactive Decay	31
2.4.Radioa	active decay Equilibrium	33
2.4.1.	Secular Equilibrium	33
2.4.2.	Transient Equilibrium	34
2.5. Expos	sure Pathways	35
2.6. Biolog	gical Effect of Radiation	36
2.7. Units	of Radioactivity	37
2.7.1.	Activity and Specific Activity	37
2.7.2.	ExposureUnits	37
2.7.3.	Absorbed Dose Units	38
2.7.4.	Dose Equivalent	39
2.7.5.	Radiation Energy Units	39
2.8. The I	Detection and Measurements of Radiation	40
2.8.1.	Semiconductor Detector	41
2.8.1.1.	Detector Configuration	41
2.8.1.2.	N-Type and P-Type Contacts	42
2.8.2.	Scintillation Detector	43
2.8.2.1.	Sodium Iodide NaI(TI)	44
	CHAPTER THREE : EXPERIMENTAL TECHNIQUES	
3.1. N atu	ral Radioactivity Measurements	46
3.1.1	Description of The High Purity Germanium detector	46
3.1.2.	Experimental Arrangement and Procedure	47
3.1.3.	High Voltage Power Supply	48
3.1.4.	Shield of Detector	48
3.1.5.	The preamplifier	49
3.1.6.	Amplifier	49
3.1.7.	The Oscilloscope	50

Title		Page
3.1.8.	Multi- Channel Analyzer	50
3.2. Detec	tor Characterization	51
3.3. Energy Resolution 5		52
		53
3.5. Efficie	3.5. Efficiency Calibration of HPGe Detector 5	
3.6. Detec	etion Limits	57
3.7. Theoretical Calculation for Natural Radiation 5		
3.7.1.	Activity Concentration (A)	58
3.7.2.	Radium Equivalent Dose (Ra _{eq})	60
3.7.3.	External Hazard Index (H _{ex})	60
3.7.4.	Internal Hazard Index (H _{in})	61
3.7.5.	Radiation Level Index (Ι γ)	61
3.7.6.	Alpha index (Iα)	61
3.7.7.	Gamma Absorbed Dose Rate (D_R)	62
3.7.8.	Annual Effective Dose (Eout)	62
3.7.9.	Excess Lifetime Cancer Risk (ELCR)	62
3.7.10.	Annual Gonadal Equivalent Dose (AGED)	63
3.7.11.	Radon Emanation Rates	63
3.8. Chemical Analysis		65
3.8.1.	Flame Photometer Analysis	65
3.8.1.1.	Description of Flame Photometer	65
3.8.1.2.	Principles of Operation	66
3.8.2.	Atomic Absorption Analysis	66
3.8.2.1.	Basic Principle	67
3.8.2.2.	Applications	68
3.8.3.	X-Ray Fluorescence (XRF) Spectrometry	68
3.8.3.1.	Fundamental Principles of X-Ray Fluorescence	69
3.8.3.2.	X-Ray Fluorescence (XRF) Instrumentation	70
3.8.3.3.	Applications	72
CHAPTER FOUR : RESULTS AND DISCUSSION OF GAMMA RAY SPECTROMETER		
4.1. Backs	ground Spectrum	73
4.2 .]	Preparation of Samples of Hyper Pure Germanium Detector	73

Titl	e	Page
4.3. Result of Gamma ray Spectrometer		74
4.4. The activity Concentration of Radionuclides		75
4.5. Radiological Hazard Index		83
4.5.1.	Radium Equivalent (Ra _{eq})	85
4.5.2.	External Hazard (H _{ex})	86
4.5.3.	External Gamma Radiation $(I\gamma)$	87
4.5.4.	Alpha Index $(I\alpha)$	88
4.5.5.	The Absorbed Dose Rate D(out)	90
4.5.6.	The Annual Outdoor Effective Dose E(out)	91
4.5.7.	Cancer Risk Factor ELCR(out)	92
4.5.8.	Annual Gonadal Equivalent Dose (AGED)	93
4.6. Mass	s Exhalation Rate of Radon (E_{Rn})	94
	CHAPTER FIVE: RESULTS OF CHEMICAL ANALYSIS	
5.1. Pr	reparation of Samples for Major Element and Heavy metals	98
5.2. T	he Major Element Contents	99
5.3. T	he Heavy Metals Contents	104
5.4. Pr	reparation of Samples of X-ray Fluorescence	110
5.5. T	he result of Major and Trace Element by X-ray Fluorescence	111
5.5.1. X-ray Analysis of Major Element		111
5.5.2.	X-ray Analysis of Trace Element	114
	Conclusion	117
	References	119

LIST OF FIGURES

Figures		Page
Fig. (1.1):	A chart on human exposure to sources of radiation	2
Fig. (1.2):	The decay scheme of uranium ²³⁸ U	6
Fig. (1.3):	The decay scheme of ²³⁵ U	7
Fig. (1.4):	The decay scheme of ²³² Th	8
Fig. (1.5):	The decay scheme of 237 Np	9
Fig. (1.6)	Radon (Rn) distribution worldwide in Bq.m ⁻³	11
Fig. (1.7):	The Contribution of Radiation Exposure to the Public is	13
	from Natural and man-made sources of Radiation	
Fig. (1.8):	The study area and sample locations as shown by Google	23
	Earth	
Fig. (2.1):	Types of Radiation.	25
Fig. (2.2):	Alpha decay	26
Fig. (2.3):	Beta minus decay	27
Fig. (2.4):	Beta plus decay	27
Fig. (2.5):	Gamma ray decay	28
Fig. (2.6):	Photoelectric effect	29
Fig. (2.7):	Compton scattering.	30
Fig. (2.8):	Pair production	31
Fig. (2.9):	The secular equilibrium between the parent and daughter	34
Fig.(2.10):	Relationship between activity and half-lives in transient equilibrium.	35
Fig. (2.11):	Radiation Exposure Pathway.	36
Fig. (2.12):	Electrode configurations for coaxial detectors for p-n	
	junction located either at the inner or outer surface of the	
	crystal	42
Fig. (2.13):	(a) N-type HPGe lattice where the impurity atom	
	(Phosphorous) occupies a site in a germanium crystal; (b)	
	show donor level in the band gap	43