

Advanced studies on *Enterococcus* species recovered from poultry

A Thesis Presented By

Aalaa Samir Ahmed Saad

(B.V.Sc., Cairo University, 2009) (M.v.sc., Cairo University, 2014)

For the Degree of

Doctor of philosophy in Veterinary Medical Science

Microbiology

Under The Supervision Of

Prof. Dr. Kamelia Mahmoud Osman Ahmed

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Jihan Mostafa Badr

Chief Researcher of Microbiology
Department of Poultry Diseases
Animal Health Research Institute, Dokki

Cairo University

Faculty of Veterinary medicine Department of Microbiology

A letter of introduction from Aalaa Samir Ahmed Saad

Specialization: Microbiology

Title: Advanced studies on Enterococcus species recovered from

poultry

Under supervision of:

1-Professor Dr. kamelia Mahmoud Osman Ahmed

Professor of microbiology, Department of Microbiology Faculty of Veterinary Medicine, Cairo University

2- Professor Dr. Jihan Mostafa Badr

Chief Researcher of microbiology, Department Poultry Diseases, Animal Health Research Institute.

Abstract

Out of 150 samples 38 chicken samples (7 brains, 23 livers and 8 hearts), 41 pigeon samples (6 livers and 35 swabs), 41 duck samples (15 brains, 20 livers and 6 hearts) and 30 human samples (30 Urine samples). The prevalence of *Enterococcus* isolates were 79 %, 100%, 85.4% and 66.7% in the chickens, pigeons, ducks and human samples respectively. Enterococcus spp. showed gelatin hydrolysis activity positive in 50% of Enterococcus spp. recovered from chicken, While was positive in a percentage of 34.1%, 25% and 11.4% for *Enterococcus* spp. recovered from pigeons, human and ducks respectively. Enterococcus spp. isolated from pigeon had the highest casein hydrolysis activity 61% followed by Enterococcus spp. isolated from chicken 53.3% then Enterococcus spp. isolated from ducks 42.9% and the lowest casein hydrolysis activity was Enterococcus spp. isolated from human source 10%. The Enterococcus spp. results for affinity percentage from Chicken were 70% and 30%, Pigeon 61% and 39%, Ducks 68.6% and 31.4% and Human 95% and 5% as moderate and strong biofilm forming capability respectively. All Enterococcus isolates supernatant fluid showed cytopathic effect on the Vero cell line (100%). The prevalence of the total γ -hemolysis activity of *Enterococcus* spp. reached 66.7% as well as, the β hemolysis activity and α - hemolysis reached 29.4% and 4% respectively. The percentage of 63.5% for Enterococcus isolates were positive for Haemagglutination (HA) of sheep blood while the percentage of 28.6 % was positive for HA of chicken blood. The results showed that Enterococcus spp. of chickens origin high resistant to Clindamycin, Oxytetracycline, Doxycycline, Gentamycin(LLA), Ciprofloxacin and Vancomycin. Enterococcus spp. of pigeons origin high resistant to Clindamycin, Oxytetracycline, Doxycycline, Gentamycin(LLA) and Vancomycin . Enterococcus spp. of ducks origin high resistant to Clindamycin, Erythromycin, Gentamycin(LLA) and Vancomycin. While Enterococcus spp. of human origin high resistant to Ampicillin, Clindamycin, Oxytetracycline, Gentamycin(LLA) and Vancomycin. The results revealed that a positive amplification of the vanA, vanB and vanC genes in the 126 isolates of Enterococcus spp. were detected in a percentage of 19.84%, 16.67 and 8.73% respectively. While the a positive amplification of the catA, catB, fexA, fexB and cfr genes in the 126 isolates of Enterococcus spp. were 27%, 18.25 %, 11.90% and zero% respectively.

Key words: Enterococcus species, antimicrobial resistance, virulence, poultry.

Dedication to

My mother
My father
My sister
& my brother

Acknowledgement

All praise and Glory to **ALLAH** the Almighty who alone made this small Objective to be accomplished. I feel honored and privileged to glorify his name in the sincerest way through this small accomplishment and ask him to accept my efforts.

I would like to express my gratitude for the encouragement and patience of my major advisor, **Prof. Dr. Kamelia Mahmoud Osman**, Professor of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine, Cairo University. Her microbiological expertise, steadfast guidance, constant accessibility, unfailing interest, stimulating supervision and constructive criticism are greatly appreciated and are the guidelines which made the completion of this work possible.

My deepest appreciation and thanks to **Prof. Dr. Jihan Mostafa Badr**, Chief Researcher, Department of Poultry

Diseases, Animal Health Research Institute, Dokki who spared no effort in giving me her full support.

My sincere thanks to all my friends in **department of Poultry diseases** and **Mycoplasma department**, Animal Health Research Institute, Dokki for their continuous support and help.

Finally, I would like to extend special thanks to my close friends, who provided both who provided both friendship and assistance during the course of this study.

List of Contents

Number		Page
1	Introduction	1
2	Review of Literature	13
3	Materials &	65
	Methods	
4	Results	84
5	Discussion	159
6	Conclusion	183
7	Summary	185
8	References	192
	Arabic Summary	300

List of Tables

Number		Page	
1	Species part of the <i>Enterococcus</i> genus	18	
2	Phenotypic characteristics of recently	28	
4	identified Enterococcus species	40	
	Sources of antimicrobial resistance		
3	(bacteria and bacterial genes) in animal	45	
	production settings		
4	Number, source and type of the examined	65	
	samples	0.5	
5	Antimicrobial sensitivity discs	70	
	Antimicrobial resistance genes and		
6	primers including nucleotide sequences	71	
	and references		
7	Key tests for identification of	75	
,	Enterococcus groups	75	
8	Identification of group I Enterococcus	75	
	species.	70	
9	Identification of group Il Enterococcus	75	
	species		
10	Identification of group III Enterococcus	75	
	species		
	Biochemical identification of suspected		
11	Salmonella, E. coli, Enterobacter spp. and	77	
	pseudomonas aurogenosa isolates		
12	Zone diameter interpretation standards	80	
	for Enterococci		
	The results of biochemical identification of		
13	the suspected 126 Enterococcus isolates	84	
	recovered from chickens, pigeons, ducks		
	and human urine samples		
14	The results of biochemical differentiation of 126 <i>Enterococcus</i> isolates recovered		
		85	
	from chickens, pigeons, ducks and human		
	urine samples Results of the biochemical		
15		86	
	characterization of 208 non-Enterococcus		

	isolates	
16	The prevalence of <i>Enterococcus</i> spp. recovered from 150 different types of samples	87
17	Prevalence of non-Enterococcus species recovered from different type of samples	88
18	The Prevalence of <i>Enterococcus</i> spp. isolated from chickens	89
19	The Prevalence of <i>Enterococcus</i> spp. isolated from pigeons	89
20	The Prevalence of <i>Enterococcus</i> spp. isolated from Ducks	90
21	The Prevalence of <i>Enterococcus</i> spp. isolated from Human	90
22	Results of Gelatin hydrolysis activity of Enterococcus spp. isolated from chicken and pigeon ducks and human urine samples	92
23	Results of Casein hydrolysis activity of Enterococcus spp. isolated from chicken, pigeon ducks and human urine samples	94
24	Result of Biofilm Formation Assay by Congo red agar method of <i>Enterococcus</i> spp. isolated from chicken and pigeon ducks and human urine samples	96
25	Result of Biofilm Formation Assay by TCP of <i>Enterococcus</i> spp. isolated from chicken samples	97
26	Result of Biofilm Formation Assay by TCP of <i>Enterococcus</i> spp. isolated from pigeon samples	98
27	Result of Biofilm Formation Assay by TCP of <i>Enterococcus</i> spp. isolated from duck samples	99
28	Result of Biofilm Formation Assay by Tissue culture plate method (TCP) of Enterococcus spp. isolated from human	100

	samples	
	Collective table about the types of biofilm	
29	formed by isolates recovered from	101
	different types of samples	
20	The cytopathic Effect on the Vero cell line	102
30	of Enterococcus spp.	102
	Results of the hemolytic activity of	
31	Enterococcus spp. isolated from chicken,	105
	pigeon ducks and human urine samples	
	Haemagglutinition pattern (number and	
32	percentage) of against erythrocytes of	107
	different species (Sheep, Chicken)	
	Number and Percentage of sensitive	
33	Enterococcus isolates recovered from	111
	different types of samples	
	Number and Percentage of intermediate	
34	resistance Enterococcus spp. isolates to	115
	antibiotics	
	Number and Percentage of Resistant	
35	Enterococcus isolates recovered from	118
	different types of samples	
	Prevalence of XDR, MDR and PDR	
36	among Enterococcus isolates recovered	119
	from different origin	
	Antimicrobial resistance profiles of	
37	Enterococcus spp. isolated from chicken	121
31	exhibiting resistance to various numbers	121
	of antibiotics	
	Antimicrobial resistance profiles of	
38	Enterococcus spp. isolated from Pigeon	123
30	exhibiting resistance to various numbers	123
	of antibiotics	
	Antimicrobial resistance profiles of	
39	Enterococcus spp. isolated from duck	125
	exhibiting resistance to various numbers	120
	of antibiotics	
	Antimicrobial resistance profiles of	
40	Enterococcus spp. isolated from human	126
	exhibiting resistance to various numbers	

	of antimicrobial agents		
	Antimicrobial resistance profiles of		
41	Enterococcus isolates collected from	120	
41	different sources exhibiting resistance to	128	
	various numbers of antibiotics		
	Multiple antibiotic resistance index		
	(MAR _{index}) of <i>Enterococcus</i> isolates		
42	collected from different sources exhibiting	131	
	resistance to various numbers of		
	antibiotics		
	Prevalence of Vancomycin resistance		
43	Enterococcus isolates recovered from	134	
43	different types of samples using antibiotic	134	
	disc diffusion test		
	Antimicrobial resistance profile of		
44	Vancomycin Resistant Enterococcus	137	
77	(VRE) recovered from different types of	137	
	samples		
	Antimicrobial resistance profile of		
45	Vancomycin Sensitive Enterococcus (VSE)	139	
	recovered from different types of samples		
	Association of VRE with Biofilm		
46	formation among Enterococcus isolates	141	
	recovered from different origin		
	Association of VSE with Biofilm		
47	formation among Enterococcus spp.	143	
	isolates recovered from different origin		
	Association of CRE (Chloramphenicol		
48	resistant Enterococcus) with Biofilm	144	
.0	formation among Enterococcus isolates	2	
	recovered from different origin		
49	Association of CSE (Chloramphenicol		
	sensitive <i>Enterococcus</i>) with Biofilm	145	
	formation among <i>Enterococcus</i> isolates		
	recovered from different origin		
50	Association of FRE (Florfenicol resistant		
	Enterococcus) with Biofilm formation	146	
	among Enterococcus isolates recovered		
	from different origin		

51	Association of FSE (Florfenicol sensitive Enterococcus) with Biofilm formation among Enterococcus isolates recovered from different origin	147
52	Results of PCR for amplification of vanA, vanB and vanC genes performed with its specific primer	150
53	Results of PCR for amplification of catA, catB, fexA, fexB and cfr genes performed with its specific primer	156
54	Summary of risk assessment of some veterinary antimicrobial drugs on human public health associated with antimicrobial resistance and their molecular basis	161