

Role of Diffusion MRI in Differentiation between the Common Pediatric Posterior Fossa Brain Tumors

Thesis

Submitted for partial fulfillment of Master degree in Radiodiagnosis

By

Osama Mohamed Abo-Bakr Khattab

M.B.,B.Ch.

Supervised by

Prof. Dr. Hanaa Abdelkader Ahmed

Professor of Radiodiagnosis Faculty of Medicine – Ain Shams University

Dr. Eman Ahmed Fouad Darwish

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2018

First of all, I would like to express my deep gratitude to ALLAH for his care and generosity throughout my life.

I would like to express my sincere appreciation to **Prof. Dr. Hanaa Abdelkader Ahmed,** Professor of Radiodiagnosis, Faculty of Medicine - Ain Shams University, for her keen supervision, guidance, overwhelming support and encouragement. I really have the honor to complete this work under her supervision.

I am very thankful to **Dr. Eman Ahmed Fouad Darwish,** Lecturer of Radiodiagnosis, Faculty of Medicine
- Ain Shams University, for the efforts and time she has devoted to accomplish this work. Her great support has been of great help throughout this work.

Last but not least, thanks to all members of The Magnetic Resonance Imaging Unit and to all the patients who helped me to accomplish this work.

I dedicate this work to all members of my family who have done a lot to me without waiting for anything in return and, I hope I can pay even small part of this debt to them.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Anatomy of the posterior fossa	4
Pathology of Posterior Fossa Tur	nors47
Basics of Diffusion Physics	86
Patients and Methods	104
Results	109
Illustrative Cases	121
Discussion	126
Summary and conclusion	141
References	143
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

ADC: Apparent Diffusion Coefficient

AICA: Anterior inferior cerebellar artery

ASA : Anterior spinal artery

ATRT: Atypical rhabdoid/teratoid tumor

CN: Cranial nerve

CNS: Central nervous system

CPP: Choroid plexus papilloma

CSF: Cerebrospinal fluid

DIPG: Diffuse intrinsic pontine glioma

DN: Desmoplastic nodular

DTPA: Diethylene triamine penta-acetic acid

DWI : Diffusion weighted Image

EGFR: Epidermal growth factor receptor

EN : extensive nodularity

EPN: Ependymoma

F: Female

GBM : Glioblastoma

Gd : Gadolinium

gFAP: Glial Fibrillary Acid Protein

HB : HemangioblastomaHS : Highly significant

ICP : Inferior cerebellar peduncle

IDH: Isocitrate dehydrogenase

JPA: Juvenile pilocytic astrocytoma

LCA : Large cell anaplastic

M : Male

MB : Medulloblastoma

MCP: Middle cerebellar peduncle

MRI : Magnetic resonance imaging

NF1 : Neurofibromatosis Type 1

NF2: Neurofibromatosis Type 2

NOS: Not otherwise specified

NS : Not significant

PCA : Posterior cerebral arteries

PICA: Posterior inferior cerebellar artery

PNET: Primitive neuroectodermal tumor

PSA : Posterior spinal artery

ROI : Region of interest

S : Significant

SCA : Superior cerebellar artery

SCP: Superior cerebellar peduncle

SE : Spin-echo

VHL: Von Hippel-Lindau disease

WHO: World Health Organization

WI : Weighted Image

List of Tables

Table N	o. Title	Page No.
Table (1):	The 2016 World Health Classification of Tumors of the Co System	entral Nervous
Table (2):	Summary of the most comm medulloblastoma diagnoses, correlates	with clinical
Table (3):	Percentage of subtypes of medullo	blastoma 110
Table (4):	Summary of ADC Values, AI Tumors to Normal Appearing Ce ADC Ratios of Tumors to brains Grade and High Grade Tumors	erebellum, and stem for Low-
Table (5):	Summary of ADC Values, ADC Tumors to Normal Appearing Ce ADC Ratios of Tumors to Medulloblastomas and pilocytic as	erebellum, and brainstem for
Table (6):	Summary of ADC Values, AI Tumors to Normal Appearing Ce ADC Ratios of Tumors to le ependymomas and pilocytic astroc	erebellum, and brainstem for
Table (7):	Summary of ADC values, ADC ratio normal appearing cerebellur ratios of tumors to br medulloblastomas and ependymor	n, and ADC ainstem for
Table (8):	Summary of ADC Values, AI Tumors to Normal Appearing Ce ADC Ratios of Tumors to brainst Tumors compared to PA, ependymomas.	erebellum, and tem for ATRT MB and

Table (9):	Summary of the range of ADC Values, ADC	
	Ratios of Tumors to Normal Appearing	
	Cerebellum, and ADC Ratios of Tumors to	
	brainstem for PAs, MBs, Ependymomas and	
	ATRTs	116
Table (10):	Summary of ADC Values, ADC Ratios of	
	Tumors to Normal Appearing Cerebellum, and	
	ADC Ratios of Tumors to brainstem for DPG	
	Tumors compared to the rest of the tumors	
	encountered in our study	118

List of Figures

Figure No	. Title	Page No.
Figure (1):	The bony landmarks and foraming the posterior cranial fossa	
Figure (2):	Tentorium cerebelli and attachments	
Figure (3):	Diagrammatic representation cerebellar lobules	
Figure (4):	Diagrammatic representation cerebellar peduncles	
Figure (5):	Diagrammatic representation of stem and associated cranial nerves	
Figure (6):	Diagram representing cross-sect anatomy of the midbrain at level of superior colliculi	of the
Figure (7):	Diagram representing trans- section through the lower pons at of facial colliculus	level
Figure (8):	Diagram representing gross ana of medulla oblongata	
Figure (9):	Diagram representing posterior subarachnoid cisterns	
Figure (10):	Diagram representing dural ve sinuses of brain	
Figure (11):	Diagram representing post circulation and Circle of Willis	

Figure (12):	Diagram representing the posterior fossa vascular territories
Figure (13): 1	Diagram representing the main posterior fossa veins
Figure (14):	Axial MRI T2WI at the level of the midbrain
Figure (15):	Axial MRI T2WI at tle level of the pons
Figure (16):	Axial MRI T2 WI at the level of the medulla oblongata
Figure (17):	Coronal MRI T2WI at the mid ventricular level
Figure (18):	Coronal MRI T2WI at the occipital horn level
Figure (19):	Sagittal MRI T2WI at the mid sagittal plane
Figure (20):	Simplified pulse diagram of a spin-echo diffusion-weighted image sequence
Figure (21):	Pulse sequence diagrams illustrate how a diffusion-weighted sequence incorporates two symmetric motion-probing gradient pulses into a single-shot SE T2-weighted sequence
Figure (22):	Brain DWI images using 3 different b-values (0, 1000, and 3000 s/mm²)92
Figure (23):	Trace ADC and DWI of stroke95
Figure (24):	T2 shine-through in a 35-year-old female with multiple sclerosis and weakness of the lower extremities99

Figure (25):	T2 washout in a 45-year-old female with hypertension, seizures and posterior reversible encephalopathy syndrome
Figure (26):	T2 blackout from susceptibility artifacts in acute hemorrhage (deoxyhemoglobin and intracellular met-hemoglobin) in a74-year-old male with left-sided weakness
Figure (27):	Susceptibility artifact 102
Figure (28):	Male to female ratio in the study Group
Figure (29):	Distribution of all patients according to their final diagnosis
Figure (30):	Low grade to high grade ratio111
Figure (31):	Scatter diagram of average ADC tumor values for all histologic tumor subtypes
Figure (32):	Scatter diagram of ADC ratios between the tumors and normal cerebellar tissue for all histologic tumor subtypes
Figure (33):	Scatter diagram of ADC ratios between the tumors and normal brainstem tissue for all histologic tumor subtypes
Figure (34):	Eight-year-old female with histologically proven cerebellar pilocytic astrocytoma 121
Figure (35):	One-year-old female with histologically proven Medulloblastoma

Figure (36):	Four-year-old female with histologically proven Ependymoma.		
Figure (37):	Two-year-old male with Atypical teratoid rhabdoid tumor	124	
Figure (38):	Six-year-old female with newly diagnosed DIPG.	125	

Abstract

Background: Diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) map provide information on MRI about the cellularity of the tumor and have an important role in the pre-operative differentiation of different tumor types.

Objective: The aim of this work is to assess the role of diffusion MRI in differentiation between the most frequently encountered pediatric posterior fossa brain tumors.

Materials and methods: Twenty-four patients were prospectively included in this study. They were referred from the Neurosurgery Department. All of them were suspected to have posterior fossa SOL according to the contrast enhanced CT. All patients were subjected to conventional MRI followed by diffusion MR imaging and calculation of the ADC values.

Results: Twenty-four children (15 females) were included in the study. Their ages ranged between one and fifteen years old with a mean age of six years. Low-and high-grade tumors could be differentiated by using both absolute ADC values and ratios. Low-grade tumors showed statistically significantly higher ADC values (1.69±0.15 vs. 0.80±0.23) and ratios for tumor versus normal cerebellum (2.17±0.30 vs. 1.14 ± 0.33) and tumor versus brain stem (1.88±0.35 vs. 1.06±0.24). The probability of error at 0.05 was considered significant, while at 0.01 and 0.001 was considered highly significant. Absolute ADC values and cerebellar and brainstem ratios were significantly higher in low-grade astrocytomas than in MBs. Overlap was found between ADC values of ATRTs and MBs. The sensitivity and specificity of a cutoff ADC value of > 1.083 x 10-3mm₂/s for differentiation of pilocytic astrocytomas from MBs and ependymomas were 100%. The sensitivity specificity of a cutoff ADC value of $\leq 0.847 \text{ x } 10\text{-3mm}_2\text{/s}$ for differentiation of medulloblastomas from PAs and ependymomas were 100%. The sensitivity and specificity of a cutoff ADC value of ≤ 1.083 $\times 10$ -3mm₂/s and $> 0.847 \times 10$ -3mm₂/s for ependymomas were 100%.

Conclusion: The calculation of ADC value in the solid enhancing portion of a tumor is a simple and reliable technique for preoperative differentiation of the most common posterior fossa tumors.

Keywords:DWI,ADC,Posterior fossa tumors.

Introduction

Brain tumors are the most common solid tumors in childhood and the second most common neoplasm in childhood after hematological malignancies; however they are the leading cause of morbidity and mortality. Up to 60-70% of brain tumors are infra tentorial, being most common in children from 4 to 11 years (*Poretti and Meoded*, 2012).

Common posterior fossa brain tumors in children include juvenile pilocytic astrocytoma (JPA), medulloblastoma (MB), ependymoma and brainstem gliomas. Because these various tumors require very different treatment approaches and have significantly different natural histories and outcomes, an accurate and specific diagnosis is mandatory (*Poretti and Meoded*, 2012).

Histopathological evaluation of brain biopsies is still the gold standard for definitive diagnosis. However there are also limitations to histological diagnosis, *e.g.* sampling errors in surgical biopsies due to intrinsic tissue heterogeneity where tumor under grading can occur and also due to the complication of being invasive. So the development of new non-invasive diagnostic tools is necessary.

Though computed tomography is widely available, its disadvantages include radiation exposure, inferior soft

tissue resolution when compared to MRI and the risk associated with injection of iodinated contrast medium (*Haaga and Boll, 2008*).

In comparison, MRI with its superior tissue resolution and the fact that it's radiation free is considered the most suitable imaging modality for initial diagnosis. Conventional MR imaging incorporating contrast-enhanced T1-weighted and T2-weighted sequences helps to characterize the location and extent of these tumors, however MR imaging provides limited information regarding tumor type and grade. Consequently, conventional MR imaging falls short as a definitive diagnostic examination (*Gauvain et al.*, 2006).

Diffusion MR imaging is a technique in which dedicated phase-defocusing and -refocusing gradients allow evaluation of microscopic water diffusion within tissues and has been considered a means to characterize and differentiate morphologic features, including edema, necrosis, and tumor tissue, by measuring differences in apparent diffusion coefficient (ADC) caused by water proton mobility alterations. Recent studies evaluated the role of diffusion weighted imaging (DWI) in differentiating type and grade of pediatric brain tumors in the posterior fossa with promising results (*Jones*, *2011*).