

The Influence of Citric Acid Bone Surface Etching and Bone Substitute Intra-Osseous Defect Fill on Crevicular Fluid BMP-2 Release Profile

(Randomized Clinical Trial)

A Thesis

Submitted in Partial Fulfillment of Requirements of Master Degree in **Oral Medicine**, **Periodontology and Oral Diagnosis**

By

Moustafa Ibrahim Mohamed Mukhtar

B.D.S., Faculty of Dentistry, Ain Shams University, (2011)

Under Supervision of

Prof. Dr. Ahmed Youssef Gamal

Professor of Oral Medicine, Periodontology and Oral Diagnosis Faculty of Dentistry - Ain Shams University

Ass. Prof. Dr. Ahmed Abd El Aziz

Associate Professor of Oral Medicine, Periodontology and Oral Diagnosis
Faculty of Dentistry - Ain Shams University

Faculty of Dentistry Ain Shams University 2019

Acknowledgement

Thanks to "Allah" for providing me the strength and will to finish my work successfully.

I would like to express my deep gratitude to my dear supervisor Dr.

Ahmed Youssef Gamal, Professor. of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry - Ain Shams University, for his continues support, patience, motivation and encouragement in getting me through to the finalize this work.

Very special thanks to **Dr. Ahmed Abd El Aziz**, Associate Professor of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry - Ain Shams University, for his supervision, advice, valuable scientific knowledge and constant support.

Special thanks to **Dr. Nashwa Nagy EL- Khazragy**, Associate Professor of Clinical Pathology, Faculty of Medicine - Ain Shams University for her valuable help and great support in our research.

Moustafa Ibrahim M. Mukhtar

LIST OF CONTENTS

List of Tables	II
List of Figures	III
List of Abbreviations	V
Review of Literature	1
Aim of the Study	27
Subjects and Methods	28
Results	38
Case Presentation	58
Discussion	70
Summary	75
Conclusions	77
Recommendations	78
References	79
Arabic Summary	

LIST OF TABLES

Table No.	Title	Page
1	The mean and the standard deviation of BMP2-Marker fo the two groups and the differences between them	
2	The mean and the standard deviation of the gingival index for group I & group II and the difference between them	
3	The mean and the standard deviation of the Plaque index for group I & group II and the difference between them	
4	The mean and the standard deviation of the Probing depth for group I & group II and the difference between them	
5	The mean and the standard deviation of clinical attachmen level for group I & group II and the difference between them	n
6	The mean and the standard deviation of the radiographic bone fill for group I & group II and the difference between them	n

LIST OF FIGURES

Figure No.	Title	Page
1	Periopaper container containing Periopaper strips used for GCF collection	. 34
2	Periopaper strip inserted in the gingival sulcus for GCF collection	. 35
3	Periopaper strip inserted in the gingival sulcus to be stored at -80 $^{\circ}$	35
4	Bar chart showing the BMP-2 marker level in each group at the different follow-up periods	. 41
5	Bar chart showing the difference in the BMP2-Marker level in each follow-up period	
6	Bar chart showing gingival index for both groups preoperatively and after 6 months period	. 43
7	Bar chart showing the difference in the gingival index between the two groups preoperatively and after 6 months period	. 43
8	Bar chart showing the plaque index for the two groups preoperatively and after 6 months period	
9	Bar chart showing the difference in the plaque index between the two groups preoperatively and after 6 months period	
10	Bar chart showing the probing depth for the two groups preoperatively and after 6 months period	. 48
11	Bar chart showing the difference between the two groups preoperatively and after six months period	. 49
12	Bar chart showing the clinical attachment level for the two groups preoperatively and after 6 months period	. 51
13	Bar chart showing the difference in clinical attachment level for the two groups pre-operatively and after six	50
14	Bar chart showing the radiographic bone fill for the two groups preoperatively and after 6 months period	
15	Bar chart showing the difference in radiographic bone fill for the two groups pre-operatively and after six months period	
16	Pre-operative Clinical and radiographic appearance showing the presence of vertical infrabony defect related to the distal aspect of the upper left first premolar	

Figure No.	Title	Page
17	Measuring the probing depth using a UNC 15 probe	. 59
18	Showing intra-sulcular incision using a 15C blade	. 59
19	showing insertion of a muco-periosteal elevator in order to	
	elevate a flap	. 60
20	Showing flap elevation from an occlusal view	60
21	Showing granulation tissue removal from the defect	. 61
22	showing the infrabony defect after removal of the	
	granulation tissue	
23	Measuring of the infra-bony defect using a UNC-15 probe	
24	Showing Citric acid solution PH 1 at 50% concentration	. 62
25	Showing cotton impregnated with citric acid inserted in the defect for 30 seconds before washing it	. 62
26	Xenograft placed after properly packing it in the defect	63
27	Suturing using a simple interrupted 4.0 polypropelene	
	suture	
28	Healing after two weeks follow up before suture removal	. 63
29	Showing Clinical and radiographic appearance after six months follow-up	. 64
30	Showing a comparison between pre-operative and post-operative radiograph	. 64
31	Clinical and radiographic pre-operative appearance showing a vertical infrabony defect related to the mesial aspect of the lower left second molar	
32	Measuring the probing depth using a UNC-15 probe	
33		
	Showing flap elevation using a muco-periosteal elevator	
34	Showing the defect after removal of the granulation tissue	
35	Measuring the defect using a UNC-15 probe	. 67
36	Showing placement of Xenograft after properly packing it into the defect	. 68
37	Suturing the flap by 4.0 polypropelene using interrupted suture technique	. 68
38	Clinical and radiographic postoperative appearance after six months followup period	. 69
39	Showing a comparison between pre-operative and post-operative radiograph	

LIST OF ABBREVIATIONS

AA Amino Acids

AAP American Academy of Periodontology

ALP Alkaline Phosphatase

BMP Bone Morphogenic Protein
CAL Clinical Attachment Level

CDMP Cartilage-Derived Morphogenetic Protein

CEJ Cemento Enamel Junction

DFDBA Demineralized Freeze-Dried Bone Allograft

EDS Energy Dispersive Spectrometry
EDTA Ethylene Diamine Tetra-acetic Acid

EMD Enamel Matrix Derivative

ePTFE Expanded Polytetrafluorethylene
FDBA Freeze-Dried Bone Allograft
FGF Fibroblast Growth Factor
GBR Guided Bone Regeneration
GCF Gingival Crevicular Fluid
GDF Growth/Differentiation Factor

GI Gingival Index

GTR Guided Tissue Regeneration

HA Hydroxyapatite

IGF Insulin like Growth Factor

NSAID Non-Steroidal Anti-Inflammatory

OP-1 Osteogenic Protein 1

PD Probing Depth

PGA Poly-Glycolic Acid

PHEMA Polyhydroxylethylmethacrylate

PI Plaque Index PLA Poly-lactic Acid

PMMA Polymethylmethacrylate
PRF Platelet-Rich Fibrin
PRP Platelet-Rich Plasma

Rh-BmP-2 Recombinant Human Bone Morphogenic Protein 2

SEM Scanning Electron Microscope

TCP Tricalcium Phosphate

TGF-b Transforming Growth Factor Beta

REVIEW OF LITERATURE

Periodontitis is defined as loss of periodontal attachment due to microbially associated host mediated inflammation. This would lead to the activation of host derived proteinases that results in the destruction of the marginal periodontal ligament fibers as well as the apical migration of the junctional epithelium allowing the bacterial biofilm to undergo apical widespread along the root surfaces of teeth. (**Tonetti et al 2018**).

Recently, Periodontitis has been classified by **Caton et al** based on a multi-dimensional staging and grading system where staging depends on initial severity of the periodontal disease on presentation and complexity in its management while grading depends on the rate of progression of the periodontal disease as well as the response to anticipated treatment. Staging includes four categories based on the amount of clinical attachment loss, probing depth, amount of bone loss, present of vertical infra-bony defects, presence of furcation involvement, tooth mobility and lost teeth due to periodontitis. Grading involves three grades based on the rate of progression of the disease, general health status and other exposure factors such as smoking (**Caton et al 2018**).

Cross-sectional epidemiological studies found that advanced periodontitis affected 10-15% of the adult population and that moderate periodontitis affected 80% of the population while 5-10% were periodontally healthy (Heitz-Mayfield et al 2002). Genco & Borgnakke reported that there are risk factors which increased the susceptibility of individuals to periodontitis. Among these risk factors are genetics, race, smoking, medical condition and stress (Genco & Borgnakke 2013)

Treatment of chronic periodontitis includes controlling the inflammatory state that is associated with it by non-surgical mechanical instrumentation in order to remove dental plaque and calculus and disrupt the plaque biofilm. Successful periodontal treatment is evident when there is reduction in pocket depth, maintenance or gain in the clinical attachment level and decrease in bleeding on probing (Heitz-Mayfield et al 2002).

One of the common features that occurs in chronic periodontitis is the destruction of the supporting structure of teeth. This includes the cementum, the periodontal ligament and the alveolar bone. Alveolar bone destruction may lead to formation of either horizontal defects or vertical defects according to the extent and location of subgingival plaque (**Papapanou & Tonetti 2000**).

Papapanou & Wennstrom reported higher risk of periodontal disease progression and tooth loss with vertical bony defects. Vertical defect could be defined radiographically whenever the distance between the top of the alveolar crest and the most apical part of the alveolar crest is more than or equal to 2.0 mm (**Papapanou & Wennstrom 1988**).

Infra-bony pockets were classified by **Goldman and Cohen** based on the number of remaining osseous walls into three walls, two walls and one wall infra-bony pockets. (**Lindh et al 2008**)

Three walls infra-bony pockets are defects that have one osseous wall missing. The missing osseous wall could be either the buccal, lingual, mesial or distal wall. Two walls infra-bony pockets are defects that have two osseous walls missing. The missing osseous walls could be buccal and proximal wall or lingual and proximal walls, in these cases there is a curtain

of soft tissue covering the destructed osseous walls. Two walls infra-bony pockets could also occur where the missing osseous walls are the proximal walls while the buccal and lingual walls are intact, in this case it is called intraosseous interproximal crater. An interproximal crater is a cup or bowl shaped defect that affects two adjacent root surfaces in a similar degree which is attributed to the spread of periodontitis simultaneously on both roots. One wall infra-bony pockets are defects that have only one osseous wall remaining while the other osseous walls are destroyed. The most common osseous wall remaining is usually one of the proximal walls while other walls are destroyed. (Lindh et al 2008)

Infra-bony pockets usually do not occur as one definite form but rather as a combination of different forms, where the apical part of the pocket could have more walls than the coronal part. In order to successfully treat infra-bony pockets, the etiology should be taken into consideration e.g. The tooth anatomy and position relative to the alveolar housing as well as occlusal forces. Any attempt for treatment without elimination of the causative factors will usually lead to failure on the long term. (**Lindh et al 2008**)

Currently the aim of Infra-bony pockets treatment is to regenerate the lost part of alveolar bone. Regeneration is defined by the American academy of periodontology as the reproduction or reconstitution of a lost or injured part to restore the architecture and function of the periodontium. In order for a material or technique to be considered as a regenerative modality, it has to show histologically the formation of bone, cementum and a functional periodontal ligament. (American Academy of Periodontology 2001)

Although the primary objective of periodontal therapy is to achieve complete regeneration, it is hard to be achieved in numerous situations due to complex biological events, factors, cells, and mediators involved in the healing process which makes periodontal regeneration not constantly predictable. (Wang et al 2005).

Healing of the periodontium is considered more complicated than other types of tissues in the body, this is attributed to the need of different types of cells for periodontal ligament, alveolar bone and cementum formation. Also the presence of avascular root surface which not only reduces the blood supply in the area but is sometimes contaminated with bacteria and their toxins that can reduce the healing potential. (Alpiste et al 2006).

Kornman and Robertson reported that the treatment outcome of infrabony defects after using periodontal regenerative materials was variable and several factors affected it. Among these factors are patient related factors such as Age, genetics, medical condition and patient's ability to maintain plaque control during the healing phase after surgery. Also site characteristic factors such as defect architecture, teeth anatomy and occlusion, as well as factors regarding the surgical protocol such as operator skill, surgical approach and the regenerative material used. (Kornman & Robertson 1985).

Regarding the defect architecture, **Klein et al** found that favorable healing was related to the depth and the angle of the defect as well as the amount of the remaining residual bony walls. Defect angulation could be determined radiographically by measuring the angle between a line drawn from the CEJ of the affected tooth to the base of the defect and another line drawn from the base of the defect to the alveolar bone crest, **Klein et al** also stated that narrow defects less than 26° showed increased clinical attachment level gain after six and twenty four months follow-up periods when compared to wider defects that were treated by GTR using expanded poly-tetrafluroetheylene (ePTFE) (**Klein et al 2001**).

Another study by **Eickholz et al** also reported that narrow defects less than 37° showed better clinical attachment level gain compared to wider defects after twenty four months follow-up period when treated by GTR using non-resorbable and bioabsorbable barrier membranes (**Eickholz et al 2004**).

Polimeni et al stated that deep narrow infra-bony defects showed better healing potential than wide shallow infra-bony defects, also three walls infra-bony defects tended to show better regeneration compared to two walls and one wall infra-bony defects. This was attributed to the abundance of blood supply and cells in the environment surrounding the defect area in case of deep, narrow and three walls defects compared to shallow, wide and two or one wall defects (Polimeni et al 2006). The defect site and morphology was found to be influenced by the anatomy of the alveolar process as well as the occlusal forces acting on the teeth. (Manson & Nicholson 1974).

Various regenerative materials have been used for the treatment of infra-bony defects, these include barrier membranes, bone grafts, enamel matrix derivative (EMD), and growth factors (**Darby I 2011**).

Barrier membranes are materials that has been used to treat infra-bony defects through guided tissue regeneration (GTR) where it prevents epithelial and fibroblast migration into the defect and provides space that allows for periodontal regeneration (Gottlow 1993).

Barrier membranes should be biocompatible, it should provide and maintain space to permit tissue regeneration, and it should also be easily handled, trimmed and placed. Barrier membranes can be classified into three generations. First generation membranes are non resorbable membranes that were used early for periodontal regeneration. These include cellulose acetate (Millipore), expanded polytetrafluoroethylene (e-PTFE), titanium reinforced

ePTFE, high-density-PTFE. The main problem with the first generation is the need for second surgery in order to remove the membrane. Second generation membranes are resorbable membranes which could be natural such as collagen or synthetic which are made from polyesters such as poly-glycolic acid (PGA), poly-lactic acid (PLA) and their copolymers. Problems of resorbable membranes include the difficulty to control degradation rate and possible tissue interaction with degradation products of the membrane. Third generation membranes are membranes that act as barrier and as a delivery vehicle for local agents such as antibiotics and growth factors. (Sam & Pillai 2014)

Growth factors have also been used for periodontal regeneration. These are signaling molecules which have the ability to stimulate cellular proliferation, migration, differentiation and matrix formation. Growth factors could be either autologous or synthetic (**Darby 2011**). Autologous growth factors are found in platelet concentrates which can be obtained from the patient's own blood and then extracted through centrifugation. Centrifugation causes the separation of blood elements into red blood cells which is discarded and other elements which can be used for regeneration which consists of different growth factors that are released from platelets and leukocytes (**Ehrenfest et al 2014**)

Platelet-rich plasma (PRP) is considered the first generation of platelet concentrates. Problems with PRP was the lack of standardized method for preparation, the use of bovine thrombin which could cause significant immunologic response and the use of anticoagulants which increased the steps needed for PRP preparation. This led to the second generation Platelet-rich fibrin (PRF) which had a simplified standardized method of preparation with no need for anticoagulant or bovine thrombin usage. (Qiao et al 2016)

Synthetic growth factors are polypeptides that are made using recombinant technology. Among these growth factors are Bone morphogenic proteins (BMPs), Platelet derived growth factors (PDGFs) insulin like growth factor (IGF), transforming growth factor beta (TGF-b) and fibroblast growth factor (FGF). The Problem with growth factors usage for periodontal regeneration is that it lasts for short duration before degradation that it may not be available when it is most needed. (**Darby 2011**)

Another material that has been used for periodontal regeneration is Enamel matrix derivative (EMD). EMD is a porcine derived material that consists of proteins mainly Amelogenin which forms about 90% of the matrix proteins. (Esposito et al 2009) It was found that during tooth development the epithelial root sheath of Hertwig produced enamel related matrix proteins which aided in the formation of acellular cementum. It was also postulated that these proteins could also aid in the periodontal and alveolar bone development (Heijl et al 1997). Histologic studies showed that EMD was able to induce the formation of cementum, bone and periodontal ligaments It was also shown that EMD had significant gain in the clinical attachment level compared to open flap debridement. (Koop et al 2012).

Bone grafts are materials that have been widely used with infra bony defects for periodontal regeneration (**Brunsvold & Mellonig 1993**). An ideal bone graft material should be biocompatible, it should not cause any toxic or allergic reactions or cause any disease transmission, it should have resorption rate equivalent to that of human bone, and it should maintain space and be easily handled (**Darby 2011**).

Bone grafts are classified according to their mechanism of action into osteogenic, osteoinductive and osteoconductive. Osteogensis is the ability to form new bone by undifferentiated cells found within the graft itself.

Osteoinduction is the ability to induce undifferentiated mesenchymal cells or osteoprogenitor cells found in the surrounding environment to develop into osteoblasts and form new bone. Osteoconduction is the ability to provide a stable framework that can support osteoprogenitor cells and osteoblasts in the surrounding environment in order to allow bone apposition (Laurencin et al 2006). Bone grafts are classified into four types according to their origin which are Autogenous, Allografts, Alloplasts and Xenografts (Wang et al 2005).

Autogenous Bone are bone grafts which are harvested from the patient where it is taken from one site and transplanted into another site. (Brunsvold & Mellonig 1993). Autogenous bone is considered to be the gold standard material for bone regenerative procedures as it is the only type of graft that can retain the cell viability and does not provoke any immunological response when used. Compared to other bone substitutes Autogenous bone graft was found to be the only one to have osteoconductive, osteoinductive, and osteogenic potential (Pandit N & Pandit IK 2016).

Autogenous bone graft can be harvested from intraoral sites e.g. mandibular symphysis, mandibular ramus, maxillary tuberosity, tori and edentulous areas or from extra-oral sites e.g. iliac crest, calvaria and tibia. Many instruments can be used to harvest autogenous bone such as bone chisels, rotary instruments, bone scrapers or by using Piezo-electric devices. The type of bone harvested could either be cortical, cancellous or corticocancellous. Cortical bone provides structural support and acts mainly as an osteoconductive material with minimal osteogenic and osteoinductive potential. This is due to the high density of the bone that results in slow revascularization and resorption of the graft. Cancellous bone is considered more osteogenic and osteoinductive than cortical bone as they have higher surface area than cortical bone which is attributed to its high porosity. Corticocancellous bone has the advantages of both cortical bone and