

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

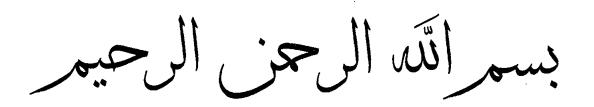
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Cairo University Faculty of Physical Therapy Department of Biomechanics


Influence of Unilateral Knee Osteoarthritis on Some Radiological Parameters of the Lumbar Spine.

By

Hossam El-Dien Hassan Hassan B.Sc. in Physical Therapy Cairo University 1995

THESIS

Submitted in partial fulfillment of the requirements for Master degree in Physical Therapy

وقل رب زدني علما

صلىق الله العظير سورة طه–الآية ١١٤

Supervisors

Prof. Amira El-Tohamy

Vice Dean for Graduate Studies and Research
Faculty of Physical Therapy
Cairo University

Prof. Magdi Bassiouni

Assistant Professor in the Radiology Department
Faculty of Medicine
Cairo University

Acknowledgments

First, thanks to ALLAH, the Compassionate and, most Merciful as we feel his great care, support, and guidance in every step in our life.

I would like to express my deepest gratitude and appreciation to **Prof. Amira El-Tohamy** Vice Dean for research and graduate studies, Faculty of Physical Therapy, Cairo University, for her continuos generous support, kind supervision, helpful advises and valuable suggestions.

I would like also to extend my deep thanks to **Prof. Magdi Bassiouni** Assistant professor in the Radiology Department, Faculty of Medicine for his great help in producing the X-ray films, recording of various radiological findings and for his creative remarks and effort for the execution of this work.

No word could ever express my deep gratitude and thanks to **Prof.**Mohamed Fouad Ibrahim chairman of department of biomechanics,
Faculty of physical therapy, Cairo University, for his great help in this study design, and in the general construction of this work.

Special appreciation to Dr. Ghada El-Hafez Lecturer of Biomechanics, and Dr. Salam El-hafez Lecturer of Biomechanics, Faculty of Physical Therapy, Cairo University, for their beneficial remarks during the preparation of this work.

Abstract

Influence of Unilateral Knee Osteoarthritis on Some Radiological Parameters of The Lumbar Spine / Hossam El-Dien Hassan Hassan El-Kholy;

Supervisors: Prof. Amira Eltohamy Vice Dean for graduate studies and research, Faculty of Physical Therapy, Cairo University. Prof. Magdi Bassiouni Assistant professor in The Radiology department, Faculty of Medicine, Cairo University, Faculty of Physical Therapy, Thesis; M.Sc., Department of Biomechanics

Abstract: Osteoarthritis (OA) is one of the most common diseases affecting the knee joint that is characterized clinically by pain, stiffness, tenderness at the joint margins, effusion, ligamentous laxity, impairment of motion, capsular contracture, muscle weakness, spasm, impairment of function and loss of independence. These clinical findings causes a symptomatic change in the functional performance of the patient that would result in change of the location of the line of gravity in relation to various body segments in static situations and abnormal oscillation of the center of gravity in dynamic activities. Thus, the purpose of this study is to determine the structural changes in the lumbar spine in patients with unilateral knee OA. Thirty healthy subjects (the control group) and thirty subjects with unilateral knee OA (the study group) were included in this study. X-ray images of the lumbar spine (A-p and Lateral) were obtained for each subject in the natural standing position. From the lateral X-ray films the radiological parameters concerning the lordotic curve angle (LCA) (measured as the angle between the tangential line of the superior end-plate of L1 and the tangential line of the superior sacral plateau), the lumbosacral angle (LSA) (measured as the angle between the tangential line of the inferior endplate of L5 and that of the superior sacral plateau and the sacral inclination angle (SIA) (measured between the tangential line of the superior sacral plateau and a horizontal line) were recorded for each subject. also, the radiological findings regarding osteophytes, disc degeneration and spondylolisthesis were recorded from both views. The independent t-test was used to compare the study group to the control group regarding the LCA, LSA and SIA. Also the incidence of osteophytes, disc degeneration and spondylolisthesis were calculated. The results of this study suggested that there is no significant difference (p <0.05) between both groups regarding the LCA, LSA and SIA. While the

incidence of osteophytes, disc degeneration and spondylolisthesis were higher in the study group.

Key words; osteoarthritis-lordotic curve angle-lumbosacral angle-sacral inclination angle-knee joint-lumbar spine.

DEDICATION

To my parents that gave me every thing in my life

List of Contents

Subject	Page No.
Chapter I	1
Introduction	1
Statement of the problem	3 3
Purpose of the study	3
Significance of the study	4
Hypothesis	4
Limitations	4
Chapter II	5
The mechanical axis of the lower extremity	6
The articular surfaces of the knee	8
Menisci of the knee	10
The patellofemoral articulaion	14
Passive and active stabilizers of the knee	18
Mechanical stresses in the knee	30
The curvature of the vertebral column	34
Stabilizing elements of the spine	39
The effect of pain on knee joint loading	54
The effect of knee OA on posture and proprioception	56
Chapter III	62
Subjects Sample	62
Instrumentation and procedures	62
Shimdzu X-ray instrument	64
Lateral X-ray filming	65
A-P X-ray filming	66
Statistical design	68
Chapter IV	70
Results	70
Chapter V	82
Discussion	82

Chapter VI	84
Summary	84
Conclusion	85
Recommendations	86
Appendix	87
References	88

List of figures

Fig. No. Figure 1	Contents The anatomical and mechanical axis of	Page No. 7
	the femur and tibia	
Figure 2	Anterior and posterior view of the femoral condyles	9
Figure 3	The articular surfaces of the tibia	10
Figure 4	Attachment of the anterior and posterior horns of menisci	13
Figure 5	The patellar articular surface	15
Figure 6	The posterior aspect of the knee joint	20
Figure 7	The medial aspect of the knee showing semimembranosus	
	muscle expansions	23
Figure 8	The collateral ligaments of the knee	26
Figure 9	The cruciate ligaments of the knee	27
Figure 10	Pathway of the line of gravity in relation to the knees	
	in the frontal plane	30
Figure 11,	a The Pelvic deltoid mechanism	32
Figure 11,	bThe pathway of the line of gravity in relation to the knees	
	in the sagittal plane	32
Figure 12	The sigmoid shape of the vertebral column	35
Figure 13	Shimadzu X-ray instrument	64
Figure 14	Lateral X-ray filming of the lumbar spine.	65
Figure 15	A-P X-ray filming of the lumbar spine.	66
Figure 16	The difference between both groups regarding	72
	the mean of age	
Figure 17	The difference between both groups regarding the mean	
	of height	73
Figure 18	The difference between both groups regarding	
	the mean of weight	74
Figure 19:	The difference between both groups regarding	
	the mean of SIA	77