

CONTROL OF A GRID CONNECTED SOLAR SYSTEM USING FRACTIONAL ORDER PID BASED ON EVOLUTIONARY COMPUTATIONAL TECHNIQUES

By

Eng. Rofida Hamdy Mohamed Ghobashy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Electrical Power and Machines Engineering

CONTROL OF A GRID CONNECTED SOLAR SYSTEM USING FRACTIONAL ORDER PID BASED ON **EVOLUTIONARY COMPUTATIONAL TECHNIQUES**

By Eng. Rofida Hamdy Mohamed Ghobashy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr: M. A. Moustafa Hassan Asoc. Prof. M. Mahmoud. Ismail

Professor of control of power system Elec. Power and Machines Dept. Faculty of Engineering, Cairo University

Associate Professor Elec. Power and Machines Dept. Faculty of Engineering, Helwan University

.....

CONTROL OF A GRID CONNECTED SOLAR SYSTEM USING FRACTIONAL ORDER PID BASED ON EVOLUTIONARY COMPUTATIONAL TECHNIQUES

By **Eng. Rofida Hamdy Mohamed Ghobashy**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines

Approved by the Examining Committee

Prof. Dr. Mohamed Ahmed Mustafa Hassan (Thesis Main Advisor)

Asoc. Prof. Dr. Mohamed Mahmoud Ismail Ali (Advisor)

Prof. Dr. Ahmed Mohamed Faheem Saker (Internal Examiner)

Prof. Dr. Fahmey Metwally Ahmed Bendary (External Examiner)

- Faculty of Engineering _ Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Rofida Hamdy Mohamed Ghobashy

Date of Birth: 8 / 2/1991 **Nationality:** Egyptian

E-mail: Eng_rofidaghobashy2013@yahoo.com

Phone: 01000908579

Address: Alexandria, New Borg Elarab, square 8

Registration Date: 1 / 10 /2014 **Awarding Date:**/..../2018 **Degree:** Master of Science

Department: Electric Power and Machine Engineering

Supervisors:

Prof. Dr: M. A. Moustafa Hassan Asoc. Prof. M. Mahmoud. Ismail Ali

Examiners:

Prof. Dr. Mohamed Ahmed Mustafa Hassan (Main Advisor)
Asoc. Prof. Dr. Mohamed Mahmoud Ismail Ali (Advisor)

Prof. Dr. Ahmed Mohamed Faheem Saker (Internal Examiner)
Prof. Dr. Fahmey Metwally Ahmed Bendary (External Examiner)

- Faculty of Engineering _ Benha University

Title of Thesis:

Control of a Grid Connected Solar System Using Fractional Order PID Based on Evolutionary Computational Techniques.

Key Words:

PID, FOPID, Optimization methods, Objective function methods, PV system.

Summary:

This thesis presents a new control type using "fractional order PID" (FOPID) in voltage regulation grid-connected PV system. FOPID controller is a natural extension of PID controller that used widely in industrial applications. The FOPID system is able to balance harmonic components and reactive power generated by the loads connected to the system. This thesis discusses the tuning and implementation of FOPID in industrial applications. A program has been developed to implement this controller in voltage regulation PV system. The optimization algorithms has been presented to tune the parameters of FOPID to obtain the desired response with application in simulation program (MATLAB). Several comparisons between the FOPID/FOPI with the classical PID/PI controllers show that the proposed control strategy improves the efficiency of the system by decreasing the total harmonic distortion of the injected current to the grid and increases the robustness of the system against changes.

So simply, it can be said that FOPI and PI controllers have been successfully implemented and show a relative improvement in the output response.

Disclaimer

I hereby	declare	that thi	s thesis	is m	ny own	original	work	and	that	no	part	of	it	has	been
submitted	d for a d	egree qu	alificat	ion a	t any o	ther univ	ersity	or in	stitu	te.					

I further declare that I have appropriately acknowledge all sources used and have cited them in the references section.

Name: Rofida Hamdy Mohame Ghobashy	Date:
Signature:	

Acknowledgments

First and foremost thanks to Allah. Without his help and blessing, I would not have been able to finish this work.

Then, I wish to express my gratitude to my supervisors **Prof. Dr: M. A. Moustafa Hassan and Asoc. Prof. M. Mahmoud. Ismail** for encouraging me the guidance and unlimited support to me during my work. I am truly grateful to them for trusting my ability to complete the work. Their patience and kindness are greatly appreciated.

I would like to thanks all the people who have imparted their valued time and efforts to help me in completing this paper, without whom it would not have been possible for me to understand and examine the project. I would like to thank **Dr Mohamed Ahmed Ebrahim** for his guidance, support, encouragement throughout the period this work was carried out. Last but not least, I am always indebted to all my family members, especially my parents and my brothers, for their endless support and love. I appreciate my husband for all the mental support and encouragement that made me believe that I can complete this work.

Table of Contents

Disclaimer	•••••••••••••••••••••••••••••••••••••••	I
Acknowledgmen	t	II
Table of Content	S	.III
Table of Figures.		V
_		
	tionsV	
List of Symbols		.IX
Abstract		X
Chapter One	Introduction	1
1.1 Preface		1
1.2 Problem Sta	tement	1
1.3 Objectives of	of the Thesis	1
1.4 Thesis Orga	nization	1
Chapter Two	Literature Review	3
2.1 Introduction		3
2.2. Summary o	n Previous Works	3
2.3 Overview or	n Photovoltaic System	3
	of Photovoltaic Model	
	dustrial Controllers	
-	onal Integral Derivative Controller	
-	onal Integral Controller	
	al Order Proportional Integral Derivative Controller	
	arameter Tuning	
	tion Definition	
-	the Chapter	
Chapter Three	Description of Photovoltaic Model	
3.1 Introduction	•	
	of Photovoltaic Array	
	of Boost Converter	
	f Operation of Boost Converter	
	of Maximum Power Point Tracking	
	g Principles of Maximum Power Point Tracking	
3.5 Definition of	of Voltage Source Converter	. 14
_	of Capacitor Bank	
	of Transformer	
	of Utility Grid	
3.9 Summary of	f the Chapter	. 18
Chapter Four	Controller and Optimization Technique Used For Its Tuning	19
	of Controller Techniques	
	ion of Proportional Integral Derivative Controller	
4.2.2 Discussion	on of Fractional Order Proportional Integral Derivative Controller	20

4.3 Study in Controller Parameters Tuning:	. 22
4.3.1 Definition of Optimization	
4.3.2 Objective Function Definition	22
4.3.3 Optimization Methods for tuning:	
4.3.3.1 Particle Swarm Optimization	
4.3.3.2 Adaptive Weighted Particle Swarm Optimization	
4.3.3.3 Adaptive Accelerated Coefficient Particle Swarm Optimization	
4.4 Summary of the Chapter	
Chapter Five Voltage Regulation Controller in Photovoltaic System	
5.1 Introduction	29
5.2 Control System in Voltage Source Converter	
5.3 Voltage Regulation Controller in Simulation	
5.3.1 Proportional Integral Derivative Controller Block in Simulation	
5.3.2 Proportional Integral Controller Block in Simulation	
5.3.3 Fractional Order Proportional Integral Derivative Controller Block in Simulation	
5.3.4 Fractional Order Proportional Integral Controller Block in Simulation	
5.4 Summary of the Chapter	
Chapter Six Simulation Results and Discussion	
•	
6.1 Introduction	
6.2 Model Definition	
6.3 Simulation Steps	
6.4 Results	
6.4.1 Proportional Integral Derivative Controller Results	
6.4.3 Fractional Order Proportional Integral Derivative Controller Results	
6.4.4 Fractional Order Proportional Integral Controller Results	
6.4.5 Controller Comparator	
6.5 Changing Irradiance and Temperature	
6.6. Results of changing the load	
6.7 Discussion	
6.8 Summary of the Chapter	
1	
Chapter Seven Conclusions and Recommendations for Future Work	. 62
7.1 Conclusions	
7.2 Recommendation for Future Work	. 62
References	. 63
Appendices	. 65
الملخص	أ

Table of Figures

Figure 2.1: Photovoltaic System	4
Figure 2.2: Photovoltaic System Structure	
Figure 2.3: The Order of Derivative and Integral of PID and FOPID	
Figure 3.1: PV Model System Using MATLAB/SIMULATION	
Figure 3.2: Temperature and Irradiance in Single Block Builder	
Figure 3.3: Boost Converter Equivalent Circuit Diagram	
Figure 3.4: The Boost Converter Description	
Figure 3.5: Maximum Power Point in <i>IV</i> and <i>PV</i> Curves.	
Figure 3.6: Block Diagram of PV Power System.	. 12
Figure 3.7: Search and Recovery of Maximum Power Point	
Figure 3.8: Perturb & Observe MPPT Operation	
Figure 3.9: Perturb & Observe MPPT Flow Chart.	
Figure 3.10: Incremental Conductance MPPT Flow Chart.	. 16
Figure 3.11: Incremental Conductance MPPT Algorithm	. 17
Figure 3.12: Voltage Source Converter Main Controller Using	
MATLAB/SIMULATION	. 17
Figure 4.1: The Feedback Control Loop	. 20
Figure 4.2: Generic Closed Loop Control System with A Fractional Order Controller	21
Figure 4.3: Flowchart of Proposed Fractional PID Design	
Figure 4.4: The Trajectory of The Particle After Velocity Updating	. 24
Figure 4.5: Particle Swarm Optimization Flow Chart	
Figure 5.1: Voltage Source Converter Controller for Grid-Tied PV Systems	. 29
Figure 5.2: Voltage DC Regulation Block	. 30
Figure 5.3: Voltage DC Regulation by Using Conventional PID Controller	. 31
Figure 5.4: PID Controller Block Diagram in MATLAB	
Figure 5.5: PID Controller Function Block Parameter	
Figure 5.6: PI Controller Function Block Parameter.	
Figure 5.7: Voltage DC Regulation by Using FOPID Controller	
Figure 5.8: FOPID Controller Function Block Parameter	. 35
Figure 5.9: Voltage DC Regulation by Using FOPI Controller	
Figure 5.10: FOPI Controller Function Block Parameter.	
Figure 6.1: PSO Technique Using Four Objective Functions.	
Figure 6.2: AWPSO Technique Using Four Objective Functions	
Figure 6.3: AACPSO Technique Using Four Objective Functions	
Figure 6.4: MAACPSO Technique Using Four Objective Functions	
Figure 6.5: PID Output Using Four Optimization Techniques and ITAE as Objective	
Function	
Figure 6.6: PSO Technique Using Four Objective Functions	
Figure 6.7: AWPSO Technique Using Four Objective Functions.	
Figure 6.8: AACPSO Techniques Using Four Objective Functions	
Figure 6.9: MAACPSO Technique Using Four Objective Functions	
Figure 6.10: PI Output Using Four Optimizations and ITAE as Objective Function	
Figure 6.11: PSO Technique Using Four Objective Functions	
Figure 6.12: AWPSO Technique Using Four Objective Functions	
Figure 6.13: AACPSO Technique Using Four Objective Functions	
Figure 6.14: MAACPSO Technique Using Four Objective Functions	. 48

Figure 6.15: Output of FOPID Using Four Optimizations and ITAE as Objective Function
49
Figure 6.16: PSO Technique Using Four Objective Functions
Figure 6.17: AWPSO Technique Using Four Objective Functions
Figure 6.18: AACPSO Technique Using Four Objective Functions
Figure 6.19: MAACPSO Technique Using Four Objective Functions
Figure 6.20: FOPI Output Using Four Optimizations and ITAE as Objective Function52
Figure 6.21: Controllers Comparison Using PSO
Figure 6.22: Controllers Comparison Using AWPSO
Figure 6.23: Controllers Comparison Using AACPSO
Figure 6.24: Controllers Comparison Using MAACPSO
Figure 6.25: Signal Builder
Figure 6.26: Controllers Comparison Using PSO
Figure 6.27: Controllers Comparison Using AWCPSO
Figure 6.28: Controllers Comparison Using AACPSO
Figure 6.29: Controllers Comparison Using MAACPSO
Figure A.1: P output for Ct=3.5
Figure A.2: V output for Ct=3.5
Figure A.3: P output for Ct=4
Figure A.4: V output for Ct=4
Figure B.1: PSO Technique Using Four Objective Functions
Figure B.2: AWPSO Technique Using Four Objective Functions
Figure B.3: AACPSO Technique Using Four Objective Functions
Figure B.4: WAACPSO Technique Using Four Objective Functions
Figure B.5: Output of PID Using Four Optimization Techniques and ITAE as Objective
Function
Figure B.6: PSO Technique Using Four Objective Functions
Figure B.7: AWPSO Technique Using Four Objective Functions
Figure B.8: AACPSO Technique Using Four Objective Functions
Figure B.9: MAACPSO Technique Using Four Objective Functions
Figure B.10: Output of PI Using Four Optimization Techniques and ITAE as Objective
Function
Figure B.11: PSO Technique Using Four Objective Functions
Figure B.12: AWPSO Technique Using Four Objective Functions
Figure B.13: AACPSO Technique Using Four Objective Functions
Figure B.14: MAACPSO Technique Using Four Objective Functions80
Figure B.15: Output of PI Using Four Optimization Techniques and ITAE as Objective
Function80
Figure B.16: PSO Technique Using Four Objective Functions
Figure B.17: AWPSO Technique Using Four Objective Functions
Figure B.18: AACPSO Technique Using Four Objective Functions
Figure B.19: AWPSO Technique Using Four Objective Functions
Figure B.20: Output of PI Using Four Optimization Techniques and ITAE as Objective
Function84
runction

List of Tables

Table 6.1: PID Controller Results	. 42
Table 6.2: PI Controller Results	46
Table 6.3: FOPID Controller Results	49
Table 6.4: FOPI Controller Results	53
Table 6.5: Results of Simulations for the Four Controllers	56
Table 6.7: Comparison between the Three Loads Using the Best Outputs for PID	.59
Table 6.8: Comparison between the Three Loads Using the Best Outputs for ID	60
Table 6.9: Comparison between the Three Loads Using the Best Outputs for FOPID.	.60
Table 6.10: Comparison between the Three Loads Using the Best Outputs for FOPI	.60
Table A.1: Outputs of PID Controller by Using Ct=2	64
Table A.2: Outputs of PID Controller by Using Ct =2.5.	64
Table A.3:Outputs of PID Controller by Using Ct =3	65
Table A.4: Outputs of PID Controller by Using Ct = 3.5	65
Table A.5: Outputs of PID Controller by Using Ct =4	65
Table A.6: Outputs of PID Controller by Using Ct =4.5	66
Table A.7: Outputs of PID Controller by Using Ct =5	66
Table A.8: Outputs of PID Controller by Using Ct =5.5	66
Table A.9: Outputs of PID Controller by Using Ct =6	67
Table B.1: PID Controller Results	
Table B.2: PI Controller Results	. 77
Table B.3: FOPID Controller Results	81
Table B.4: FOPI Controller Results	. 84

List of Abbreviations

AACPSO Adaptive Acceleration Coefficient Particle Swarm Optimization

AWPSO Adaptive weighted Particle Swarm Optimization

FOPID Fractional-Order PID Controller
FOPI Fractional-Order PI Controller
IAE Integral of Absolute Error
IC Incremental Conductance
ISE Integral of Square Error

ITAE Integral of the Time Weighted Absolute Error.

ITSE and Integral of Time Multiplied By the Squared Error.

MAACPSO Modified Adaptive Acceleration Coefficient Particle Swarm

Optimization

MATLAB Matrix Laboratory

MPPT Maximum Power Point Tracking

P&O Perturb & Observe

PID Proportional Integral Derivative controller

PI Proportional Integral Controller
PLL three-phase Phase Locked Loop
PSO Particle Swarm Optimization

PV system Photovoltaic System

VSC Voltage Source Converter

List of Symbols

A Accelerated Coefficient is added to improve the swarm search.

a(Z) determined by Integrator method.

a and x The integration limits for calculus equations.

b(Z) determined by filter method

c1&c2 Positive constants called acceleration coefficients, usually are 2.

e Error =SP-PV

 $F_m(t)$ Is the mean value of the best positions related to all particles at iteration i

gbestki The best particle position based on swarm's experience.

i Number of iteration

 I_d and I_q Active and reactive currents components.

I_{mp} current at maximum power *Isc* Short-circuit current.

k_c Is determined based on the fitness value of G_{best} and P_{best} at iteration i

 K_d Derivative gain, a tuning parameter K_i Integral gain, a tuning parameter K_p Proportional gain, a tuning parameter.

N Filter coefficien

n The current generation

*p*_{bestki} The best particle position based on its experience

Random numbers within the range [0,1].

Time or instantaneous time (the present).

 $U_{ref(abc)}$ three modulating signals

 V_d and V_q voltage outputs of the current controller

 $V_{i}(i) \& X_{i}(i)$ The velocity and the current position of particle i in the search space at

iteration i, respectively.

 V_{mp} Voltage at maximum power

 V_{oc} Open-circuit voltage.

Z Z-domain for discrete system

Inertia weight Get the swarm in best area. Fractional order for calculus equations.

 $\alpha_{\rm w} \& \alpha_{\rm c}$ Are determined with respect to initial and final values of ω with the same

manner

Γ Euler's Gamma function for calculus equations

au Variable of integration; takes on values from time 0 to the present t

λ Order of s in integralμ Order of s in derivative

Abstract

This thesis presents voltage regulation of photovoltaic system tied to the grid. There are four controllers have been used; PID, PI, FOPID, and FOPI.

PV system is depending on converting the solar energy into electric energy by using semiconductors. PV system generally consists of energy conversion that take the energy source and transfer it to electricity, then it pass through energy inversion, and at the end it goes to energy distribution according to the PV systems type.

"Proportional Integral Derivative" (PID) controller is being used in large space because it is so simple in control and implementation. Simple controllers like PID controller are not suitable for all processes. PID controller is suitable for processes with almost monotone step responses on condition that requirements are not too tough. PID controllers are not fitting for process that is extremely oscillatory.

Nowadays the researchers improve this type of controllers to get the system much better in its transient response. This new controllers are called "Fractional Order Proportional Integral Derivative" (FOPID). The implementation of this controller is not easy and it needs more difficult mathematical equations description, so to make its implementation much easier a computer programs is used like MATLAB program.

The PID controller has low robust ability compared with the FOPID controller when the system has many challenges from the operating atmosphere of the system, for example temperature and weather.

Controller parameters are attuned by using four methods of optimization techniques, which are:

- "Particle Swarm Optimization" (PSO),
- "Adaptive Weighted PSO" (AWPSO),
- "Adaptive Acceleration Coefficient PSO" (AACPSO),
- "Modified Adaptive Acceleration Coefficient PSO" (MAACPSO).

Four objective function techniques are used in optimization. The good optimization is in finding the parameters of the controllers such that the objective function is minimum.

Photovoltaic (PV) system is used as an application for comparing between those controllers. By MATLAB / SIMULINK software, it has been implemented for comparing the output response of the controllers for regulating the DC voltage of PV. The output results are compared between FOPID/FOPI and the classic PID/PI controllers in simulation and illuminated that the FOPI and PI have been successfully implemented in PV system and confirmed the relative improvement in the output response.

Keywords — *PID*, *FOPID*, *Optimization methods*, *Objective function methods*, *PV system*.