

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Blood Gases Response to Different Body Positions in Patients with Chronic Obstructive Pulmonary Disease in Intensive Care Unit

BICATO

By Khaled Mohamed Assem

B.Sc. PT. (1989)

A Thesis Submitted in Partial Fulfillment for the Requirement of the Master Degree in Physical Therapy

Cairo University
Faculty of Physical Therapy
Department of Physical Therapy
for Cardiopulmonary Disorders
and Geriatrics

Supervisors

Prof. Dr. Awny F. Rahmy

Prof. of Physical Therapy for Cardiopulmonary disorders and Geriatrics Faculty of Physical Therapy Cairo University

Prof. Dr. Mohamed Sherief Mohamed Elbohy

Prof. of Chest Diseases Faculty of Medicine Ain Shams University

Dr. Alsayed Abd Elhamed Shanab

Assistant Professor in the Department of Physical Therapy for Cardiopulmonary Disorders and Geriatrics Faculty of Physical Therapy Cairo University

﴿ بسم الله الرحمن الرحيم ﴾

" فَأَمَّا الزَّبَدُ فَبَذْهَبُ جُفَاء

وَأَمَّا مَا بَنِفَعُ النَّاسَ فَبَمْكُثُ فِي الْأَرْضِ

صدق الله العظيم

"سورة الرعد، أية ١٧"

ACKNOWLEDGMENT

First of all, I would like to kneel thanking "Allah" for giving me the ability, energy and patience to accomplish this work.

It is a great pleasure to express my deepest sincere appreciation and gratitude to *Prof. Dr. Awny F. Rahmy* Prof. of Physical Therapy for Cardiopulmonary disorders and Geriatrics, Faculty of Physical Therapy, Cairo University, for his valuable supervision and kind advice throughout the whole work. His precious remarks and continuous guidance was very helpful and beneficial for me.

I'm greatly honored to express my great gratitude, appreciation and deepest thanks to *Prof. Mohamed Sherief Mohamed Elbohy* Prof. Dr. of Chest Diseases, Faculty of Medicine, Ain Shams University. He gave me a great deal of his valuable time and effort for this work. His mastery advice, constructive criticism and continuous support enabled me to achieve this work.

Deepest thanks to *Prof. Dr. Alsayed Abd Elhamed Shanab* Assistant Prof. in the department of Physical Therapy for Cardiopulmonary Disorders and Geriatrics, Faculty of Physical Therapy, Cairo University, for his sincere assistance, valuable guidance and continuous encouragement throughout this work.

I'm greatly honored to express my deepest thanks to my patients.

Khaled Mohamed Assem

2006

DEDICATION

To The Spirit
Of My Father

Blood Gases Response to Different Body Positions in Patients with Chronic Obstructive Pulmonary Disease in Intensive Care Unit.

By: Khaled Mohamed Assem. Faculty of Physical Therapy – Cairo University, M.Sc. thesis, Department of Physical Therapy for Cardiopulmonary Disorders and Geriatrics

Supervisors: Prof. Awny F. Rahmy, Prof. Mohamed Sherif Mohamed Elbohy, Prof. Alsayed Abd Elhamed Shanab

Abstract

The purpose of this study was to evaluate blood gases response to different body positions in patients with chronic obstructive pulmonary disease in intensive care unit. Fifty four chronic obstructive pulmonary disease patients, stage III, with mean age 65 ± 5.35 years participated in this study. Three blood samples was drawn from each patient at base line supine position, at side lying position and at prone position, with interval of 2 hours between each sample. Physical therapy program was performed to the patient at each position. The results showed that there was highly significant improvement of blood gases (PaO₂, SaO₂), at prone position and statistically significant improvement of prone position with statistically significant differences between prone lying position and side lying and supine lying positions. From the obtained results in this study, it can be concluded that prone lying position may represent a beneficial therapeutic modality to improve blood gases in chronic obstructive pulmonary disease patients in intensive care unit.

List of Abbreviations

ABG	Arterial Blood Gases
AECOPD	Acute Exacerbation of Chronic Obstructive
	Pulmonary Disease
ATP	Adenosine Triphosfate
bpm	Beat Per Minute
brpm	Breath Per Minute
COPD	Chronic Obstructive Pulmonary Disease
CRP	Creative Protein
ECG	Electro Caridio Graphy
FEV ₁	Forced Expiratory Volume in 1 Second
Fig	Figure
FiO ₂	Fraction of Inspired Oxygen
FVC	Forced vital Capacity
HCO ₃	Arterial Blood Bicarbonate
HR	Heart Rate
ICU	Intensive Care Unit
LTB4	Leukotrin B4
MAP	Mean Arterial Pressure
mmHg	Mellimeter Mercury
NO ₂	Nitrogen Dioxide
O 3	Ozone
PaCO2	Arterial Carbondioxide Pressure
PA	Alveolar Pressure
PaO2	Arterial Oxygen Pressure
PEEP	Positive End-Expiratory Pressure
pН	Hydrogen Ion concentration
PPı	Pleural Pressure
RR	Respiratory Rate
TNF	Tumor Necrosis Factor
SaO2	Arterial Oxygen Saturation
SLPI	Secretory leukoprotenase inhibitor
SO ₂	Sulpur Dioxide
V/Q	Ventilation / Perfusion Ratio

List of Figures

Fig. No.	Subject	Page
Fig (1)	Pathogenesis of COPD	10
Fig (2)	Central Airway Changes in COPD	11
Fig (3)	Peripheral Airway Changes in COPD	12
Fig (4)	Airway Narrowing in COPD	20
Fig (5)	Factors Contributing to Dyspnea in COPD	26
Fig (6) (6 a & b)	Acid-Base Analyzer Device	67
Fig (7)	The ECG Monitor	68
Fig (8) (8 a & b)	Patient in Side Lying Position	70
Fig (9) (9 a & b)	Patient in Prone Position	71
Fig (10)	The Mean Value of HR (bpm) as Measured from Supine, Side Lying and Prone Positions	76
Fig (11)	The Mean Differences of HR (bpm) Measured from Supine, Side Lying and Prone Positions	77
Fig (12)	The Mean Values of RR (brpm) as Measured from Supine, Side Lying and Prone Positions	79
Fig (13)	The Mean Differences of RR (brpm) as Measured from Supine, Side Lying and Prone Positions	80
Fig (14)	The Mean Values of MAP (mmHg) as Measured from Supine, Side Lying and Prone Positions	82
Fig (15)	The Mean Differences of MAP (mmHg) as Measured from Supine, Side Lying and Prone Positions	83
Fig (16)	The Mean Values of PaO2 (mmHg) as Measured from Supine, Side Lying and Prone Positions	85
Fig (17)	The Mean Differences of PaO2 (mmHg) as Measured from Supine, Side Lying and Prone Positions	86

List of Figures (Cont.....)

Fig. No.	Subject	Page
Fig (18)	The Mean Values of SaO2 (%) as Measured from Supine, Side Lying and Prone Positions	88
Fig (19)	The Mean Differences of SaO2 (%) as Measured from Supine, Side Lying and Prone Positions	89
Fig (20)	The Mean Values of PaO2 (mmHg) as Measured from Supine, Side Lying and Prone Positions	91
Fig (21)	The Mean Differences of PaO2 (mmHg) as Measured from Supine, Side Lying and Prone Positions	92
Fig (22)	The Mean Values of HCO3 (mmoL/L) as Measured from Supine, Side Lying and Prone Positions	94
Fig (23)	The Mean Differences of HCO3 (mmoL/L) as Measured from Supine, Side Lying and Prone Positions	95
Fig (24)	The Mean Values of pH as Measured from Supine, Side Lying and Prone Positions	97
Fig (25)	The Mean Differences of pH as Measured from Supine, Side Lying and Prone Positions	98

List of Tables

Table. No.	Subject	Page
Table (1)	Patients demographic date	74
Table (2)	The mean value of the heart rate between different body positions	76
Table (3)	The mean differences of HR between body positions	77
Table (4)	The mean value of the respiratory rate between different body positions	79
Table (5)	The mean differences of RR between different body positions	80
Table (6)	The mean values of hemodynamic variables (MAP) between different body positions	82
Table (7)	The mean differences of MAP between different body positions	83
Table (8)	The mean values of PaO2 in different body positions	85
Table (9)	The mean differences of PaO2 between different body positions	86
Table (10)	The mean values of SaO2 in different body positions	88
Table (11)	The mean differences of SaO2 between different body positions	89
Table (12)	The mean values of PaCO2 in different body position.	91
Table (13)	The mean differences of PaCO2 between different body positions	92
Table (14)	The mean values of HCO3 in different body positions.	94
Table (15)	The mean differences of HCO3 between different body positions	.95
Table (16)	The mean values of PH in different body positions	97
Table (17)	The mean differences of PH between different body positions	98