

Evaluation of Serum Neurotensin Level in Fatty Diet Induced Obesity

Thesis

Submitted for Partial Fulfillment of Master Degree in Physical Medicine,
Rheumatology and Rehabilitation

Presented by

Jehan Magdy Mahmoud Moharram

M.B., B.Ch.

Supervised By

Prof. Dr. Mohamed Ragaai El-Helow

Professor of Physical medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Prof. Dr. Iman Mahmoud Ghanima

Professor of Physical medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Dr. Dalia Mohamed Fzz Fl-Din

Assistant professor of Physical medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

قياس مستوى النيوروتنسين فى المصل في حالات تناول الطعام الدهنى المسبب للسمنة

رسالة

توطئة للحصول على درجة الماجستير فى الطب الطبيعى والروماتيزم والتأهيل

مقدمة من جدي محمود محرم/الطبيبة بكالوريوس الطب و الجراحة

تحت إشراف

أد/ محمد رجائي الحلق

أستاذ الطب الطبيعى و الروماتيزم و التأهيل كلية الطب- جامعة عين شمس

أد/ إيمان محمود غنيمة

أستاذ الطب الطبيعى و الروماتيزم و التأهيل كلية الطب- جامعة عين شمس

د/ داليا محمد عز الدين

أستاذ مساعد االطب الطبيعي والروماتيزم والتأهيل كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٩

سورة البقرة الآية: ٣٢

First and foremost, thanks to **ALLAH** almighty for knowledge and understanding that He grants me.

Can never serve me to express my deepest gratitude to all my professors who never retained any effort to guide me through my path morally and scientifically.

I am sincerely indebted to **Prof. Dr. Mohamed Ragaai El-Helow** Professor of Physical Medicine, Rheumatology and Rehabilitation, for his guidance and sincere help from beginning of the current work. Without his care this work could never be accomplished.

I am deeply grateful for **Prof. Dr. Iman Mahmoud Ghanima**, Professor of Physical Medicine, Rheumatology and Rehabilitation, for her valuable help and guidance. I am deeply indebted to her guidance, sincere directions and close supervision.

I would like to express my deepest thanks and sincere gratitude to **Dr. Dalia Mohamed Ezz El Din Mahmoud** Assistant Professor in Physical Medicine, Rheumatology and Rehabilitation, for giving me the privilege of working under her supervision, for her encouragement, her patience and valuable instructions.

I would like to express my deepest thanks and sincere gratitude to **Dr. Dalia Samaha** Assistant professor in clinical pathology department for her patience and valuable instructions.

Jehan Magdy Mahmoud Moharram.

This work is dedicated to ...

My beloved Parents, to whom I owe everything I ever did in my life and will achieve.

My husband My brother and my dear friends for their support.

CONTENTS

Subjects	Page
• List of Abbreviations	I
• List of table	III
List of Figures	V
• Introduction	1
Aim of the Work	3
Review of literature:	
Chapter 1: Obesity	d
Fatty Diet Induced Obesity Chapter 3: Neurotensin	
Chapter 4: Management of obesity	
Patients And Methods	51
Results	61
• Discussion	71
Summary and Conclusions	79
Recommendations	82
References	83
• Appendix	104
Arabic Summary	

LIST OF ABBREVIATIONS

ACC : Acetyl-coa carboxylaseAgRP : Agouti-related peptide

AMPK : Adenosine monophosphate kinase

AP : Area postrema

APPL1 Adaptor protein, phosphotyrosine interaction, ph

domain, and leucine zipper-containing protein 1.

ARC: The arcuate nucleus

BDNF : Brain-derived neurotrophic factor

BMI : Body mass index

CART: Cocaine- and amphetamine-regulated transcript.

Cck : Cholecystokinin

CRH : Corticotrophin-releasing hormone

CRP : C-reactive proteinCVD : Cardiovascular disease

DM : Diabetes mellitus
 DMH : Dorsomedial nucleus
 DNA : Deoxyribonucleic acid
 FAS : Fatty acid synthase

FDA : Food and drug administration

FTO gene : Fat mass and obesity associated gene

GAL : Galanin

GLP : Glucagon-like peptideGLP-1 : Glucagon like peptide-1

HDL-C High density lipoprotein cholesterol

H.S Highly significant

HNF-4 : Hepatocyte nuclear factor

ICAM : Intercellular adhesion molecule

IL-12 : Interleukin- 12IL-6 : Interleukin- 6IR : Insulin receptor

IRS : Insulin-receptor substrate

LDL-C: Low density lipoprotein cholesterol

LH : Lateral nuclei

LHA : Lateral hypothalamic area

LPL: Lipoprotein lipase

&List of Abbreviations

MAOIs : Monoamine oxidase inhibitorsMC4R : Melanocortin 4 receptors

MCH : Melanin-concentrating hormone

MIP-1α : Macrophage inflammatory protein 1-alpha

MSH : Melanocyte-stimulating hormoneMUFAs : Mono unsaturated fatty acidsNAFLD : Non-alcoholic fatty liver disease

NF-κB : Nuclear factor-kappab

NPY : Neuropeptide y
N.S : Non significant
NT : Neurotensin

NTR : Neurotensin receptor

NTS : Nucleus of the solitary tract
PCOS : Polycystic ovary syndrome

PFA : Perifornical area

POMC : Pro-opiomelanocortin.

PPAR-α : Peroxisome proliferator-activated receptor alpha.
 PPARγ : Peroxisome proliferator-activated receptors gamma.

PUFAs : Polyunsaturated fatty acidsPVN : Paraventricular nucleus

PYY : Peptide y

SFAs : Saturated fatty acidsSORL : Sortilin-related receptor

SQ-FFQ : Semi-quantitative food frequency questionnaire

sTNFR1 : Soluble tumour necrosis factor receptors

T2DM: Type 2 diabetes mellitus.

TC : Total cholesterol
TG : Triglycerides

TNF- α : Tumor necrosis factor α

TRH : Thyrotropin-releasing hormone

VMH : Ventromedial nucleusWHO : World health organization

LIST OF TABLE

Tab. No.	Subject	Page
Table (1)	Classification of overweight and obesity by BMI	6
Table (2)	Genes in humans and mice that contribute to obesity	10
Table (3)	Neurotransmitters and hormones that influence feeding and satiety centers in the hypothalamus	17
Table (4)	Weight loss drugs.	49
Table (5)	Fat Intake questionnaire	54
Table (6)	Comparison between cases and control group as regard the mean age and gender	62
Table (7)	Comparison between patients and control group as regard the mean body mass index	63
Table (8)	Comparison between cases with obesity and controls as regards the mean Serum Neurotensin NT	63
Table (9)	Comparison between the degree of obesity among cases and the mean level of neurotensin:	64
Table (10)	Comparison between gender of patients with obesity as regards the mean NT level	64
Table (11)	Relation between Neurotensin level & Age	64
Table (12)	Lipid profile in studied patients	65
Table (13)	Abnormalities in lipid profile among studied patients	65
Table (14)	Correlation coefficient between serum neurotensin and Lipid profile among all obese patients	65
Table (15)	Comparison between cases with low and normal HDL as regards the mean neurotensin	66
Table (16)	Comparison between cases with normal and high Cholesterol as regards the mean neurotensin	66
Table (17)	Comparison between cases with normal and high triglycerides as regards the mean neurotensin	67
Table (18)	Comparison between cases with normal and	67

≰List of Table

Tab. No.	Subject	Page
	high LDL as regards the mean neurotensin	
Table (19)	Comparison between level of fat intake by questionnaire and abnormal lipid profile among patients	68
Table (20)	Correlation coefficient between serum neurotensin and Fat intake questionnaire	69
Table (21)	Comparison between the level of fat intake according to fat intake questionnaire among cases and the mean level of serum neurotensin	69
Table (22)	Roc curve of Neurotensin in detection of obesity among patients	70

∠List of Figures

LIST OF FIGURES

Fig. No.	Subject	Page
Fig. (1)	Central regulators of appetite.	14
Fig. (2)	Model for regulation of the hindbrain response to	16
	satiety signals by hormonal input from the ARC.	
Fig. (3)	Peripheral regulators of appetite.	19
Fig. (4)	Pathophysiology of obesity	21
Fig. (5)	Schematic diagram showing the proposed	39
	signaling routes of peripheral NT in the central	
	regulation of feeding.	
Fig. (6)	Roc curve of Neurotensin in detection of obesity	70
	among patients	

ABSTRACT

Introduction: Neurotensin is expressed in the brain as well as it is localized in specialized enteroendocrine cells of the small intestine.

Objectives: This paper aims to evaluate the serum level of neurotensin in various grades of obesity and it's relation to fatty diet.

Patients and methods: A sample of 60 patients were subjected to Full medical History, bowel habits, detailed dietary habits (Detailed fat-intake questionnaire) and body mass index (BMI). Also serum neurotensin, random blood sugar, thyroid profile and lipid profile were measured. Patients were subdivided into four groups according to their degree of obesity as follow: fifteen overweight patients, fifteen obese class I patients, fifteen obese class II patients and fifteen obese class III patients. Twenty five apparently healthy non obese individuals of matched age and sex were taken as a control group.

Results: Our study revealed 84% rise of the mean NT in cases compared to controls with highly statistical significant difference. Significant positive correlation was found between serum neurotensin, high cholesterol, low HDL and total fat intake questionnaire. But no correlation was found between serum neurotensin and TGs, LDL, age and sex.

Conclusion: Our limited data suggest that serum neurotensin may play a potentially important role in the development of obesity in people with high BMI consuming fatty diet.

Key words: neurotensin, obesity, fatty diet.

INTRODUCTION

Obesity and its associated comorbidities as diabetes mellitus and hepatic steatosis contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession (*Guh et al.*, 2009).

Obesity increases the likelihood of various diseases and conditions, particularly cardiovascular diseases, type 2 diabetes, obstructive sleep apnea, certain types of cancer, osteoarthritis and depression (*Luppino et al.*, 2010).

Major recent advances in our understanding of the basic neurobiology of appetite and energy homeostasis have identified numerous targets for potential anti-obesity drug development (*Bray et al.*, 2016).

Neurotensin (NT) attenuates the activation of Adenosine monophosphate (AMP-activated protein kinase AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and this occurs through a mechanism involving neurotensin receptor 1 (NTR1) and neurotensin receptor 3 (NTR3) (also known as sortilin). Consistent with the findings in mice, expression of NT in *Drosophila* midgut enteroendocrine cells results in increased lipid accumulation in the midgut, body fat , and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation (*Melander et al.*, 2012).

Recent work reporting that NT-deficient mice are protected against diet-induced obesity. Interestingly, the beneficial metabolic effects observed did not depend on effects on feeding behavior or energy expenditure but resulted from decreased intestinal fat absorption. Analogously, a selective NT receptor (NTR) antagonist decreased intestinal lipid absorption in wild-type mice (*LI et al.*, 2016).

Li et al., found that obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT). In longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. The findings directly link NT with increased fat absorption and obesity and suggest that NT may provide a prognostic marker of future obesity and a potential target for prevention and treatment (Li et al., 2016).

AIM OF THE WORK

This study is designed to evaluate the serum level of neurotensin in various grades of obesity and it's relation to fatty diet.