# STUDIES ON FACTORS AFFECTING THE STABILITY OF CERTAIN BIOPESTICIDES

By

### IZAT RAAFAT ABDEL-HAMEID ATEYA

B.Sc. Agric. Sci. (Plant Production), Fac. Agric., Sababasha Alexandria Univ., 2009

### **THESIE**

**Submitted in Partial Fulfilment of the Requirements for the Degree of** 

## MASTER OF SCIENCE

In

**Agricultural Sciences** (Pesticides)

Department of Economic Entomology and Pesticides
Faculty of Agriculture
Cairo University
EGYPT

2018

#### APPROVAL SHEET

# STUDIES ON FACTORS AFFECTING THE STABILITY OF CERTAIN BIOPESTICIDES

M.Sc. Thesis
In
Agric. Sci. (Pesticides)

 $\mathbf{B}\mathbf{v}$ 

### IZAT RAAFAT ABDEL-HAMEID ATEYA

B.Sc. Agric. Sci. (Plant Production), Fac. Agric., Sababasha, Alexandria Univ., 2009

### APPROVAL COMMITTEE

Dr. MAHER IBRAHEEM ALI
Professor of Pesticides Chemistry and Toxicology, Fac. Agric.,
Alexandria University

Dr. IBRAHIM SALEH AHMED ABDALLAH
Associate Professor of Pesticides, Fac. Agric., Cairo University

Dr. MOHAMED ABDELHADY KANDIL
Professor of Pesticides, Fac. Agric., Cairo University

Date: 6 / 12 / 2018

### SUPERVISION SHEET

# STUDIES ON FACTORS AFFECTING THE STABILITY OF CERTAIN BIOPESTICIDES

M.Sc. Thesis
In
Agricultural Sci. (Pesticides)

 $\mathbf{B}\mathbf{v}$ 

### IZAT RAAFAT ABDEL-HAMEID ATEYA

B.Sc. Agric. Sci. (Plant Production), Fac. Agric., Sababasha Alexandria Univ., 2009

## SUPERVISION COMMITTEE

Dr. MOHAMED ABDELHADY KANDIL Professor of Pesticides, Fac. Agric., Cairo University

Dr. MOATAZ ABDELMOANEM MOUSTAFA Associate Professor of Pesticides, Fac. Agric., Cairo University

Dr. MOHAMMED ABDALLAH ALI SALEH Head Research of Pesticides Analysis, CAPL, ARC

Name of Candidate: Izat Raafat Abdel-hameid Ateya Degree: M.Sc.

**Title of Thesis:** Studies on Factors Affecting the Stability of Certain

Biopesticides.

Supervisors: Dr. Mohamed Abdelhady Kandil

Dr. Moataz Abdelmoanem Moustafa Dr. Mohammed Abdallah Ali Saleh

**Department:** Economic Entomology and Pesticides **Branch:** Pesticides

**Approval:** 6 / 12 /2018

#### **ABSTRACT**

Biopesticides especially the entomopathogenic bacterium Bacillus thuringiensis (B.t) has been used in crop protection for the last 70 years, but most of the biopesticides have macromolecules containing several chemical active groups causing the compounds to be easily broken down, as also less stable under environmental conditions. So, the current study was directed to evaluate the influence of certain environmental conditions on the stability and biological activity of two commercial formulations of B.t (Dipel 2X 6.4% WP and Protecto 9.4% WP), two commercial formulations of spinosyns (Tracer 24% SC and Radiant 12% SC) in addition to, two commercial formulations of emamectin benzoate (Proclaim and Broact 5% SG). The tested biopesticides were stored under accelerated hot storage, outdoor and ambient shelf storage. Also, photolysis studies were carried out by exposing samples to UV and sunlight in aqueous solutions. Parallel a bioassay test was carried out to assess the biological activity of each bioinsecticide against neonate and the 2<sup>nd</sup> larvae instar of the cotton leafworm Spodoptera littoralis. The results revealed that the loss% of all tested bioinsecticides after storage for two years was above the permissible limits of WHO and FAO specifications except Dipel 2X. In accordance with this trend, the bioassay tests revealed decreased in their biological activity (LC<sub>50'</sub>s) against neonate and the 2<sup>nd</sup> instar larvae of cotton leafworm. Moreover, biological activities of the samples stored under direct sunlight and UV were reduced to half values of their LC<sub>50</sub>. Photolysis of aqueous solutions for bioinsecticides reduced the half-life especially in the case of emamectin benzoate formulation. Generally, it could be concluded that the stability of bioinsecticides could be properly evaluated prior to submission for registration as these products showed less stability under storage at ambient conditions. Also, the decision makers will take these results into considerations and examine such products case by case.

**Key words:** *Bacillus thuringiensis*, spinosyns, emamectin benzoate, stability, photolysis, biological activity

## **DEDICATION**

I dedicate this work to the spirit of my father, and my mother Allah save her, and my brothers for all the lovely support they offered during my studies, and whatever I said about them will be little in their right to, I will not forget the role of my wife who helps me during this period and she always close to me, and in the most difficult moments was like the bright candle that illuminated my way, to my children Zeyad and Aisel.

# ACKNOWLEDGEMENT

Praise and Thanks be to great **Allah** most gracious who shines my way and supported me with patience and perseverance to fulfill this work.

I wish to express my sincere thanks, deepest gratitude, and appreciation to **Dr. Mohamed Abdelhady Kandil**, Professor of Pesticides, Faculty of Agriculture, Cairo University, for suggesting the problem, supervision, continued assistance, and guidance through the course of my study and for their revision of the manuscript of this thesis, I cannot give him his right, Sincere thanks also to **Dr. Moataz Abdelmoanem Mostafa**, Assistant professor of Pesticides, Faculty of Agriculture, Cairo University, who help me in everything, I wish him success, I will not forget my professor and my research supervisor, **Dr. Mohammed Abdallah Ali Saleh**, Head Research of Pesticides Chemistry, Central Agricultural Pesticides Laboratory, Agricultural Research Center, who always encouraged and motivated me, I cannot give him his right, he was like my father.

Grateful appreciation is also extended to all staff members of Pesticides Analysis Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, and to all staff members of the Laboratory of Pesticides Section, Faculty of Agriculture, Cairo University.

I cannot express enough thanks to my family for their support and encouragement throughout this research work.

Thanks for every one help me in this work.

# **CONTENTS**

|                                                    | Pag        |
|----------------------------------------------------|------------|
| INTRODUCTION                                       | 1          |
| REVIEW OF LITERAURE                                | 9          |
| 1. General background for utilized bioinsecticides | 9          |
| <b>a.</b> Bacillus thuringiensis (B.t)             | 9          |
| <b>b.</b> Spinosyns (spinosad and spinetoram)      | 12         |
| c. Emamectin benzoate (avermectins)                | 15         |
| 2. Effect of storage on active ingredient of       |            |
| pesticides formulations                            | 1′         |
| 3. The effect of sunlight and UV light exposure on |            |
| stability the active ingredients of pesticides     | 32         |
| MATERIALS AND METHODS                              | <b>5</b> 3 |
| 1. Biopesticides                                   | 53         |
| <b>a.</b> Bacillus thuringiensis formulations      | 53         |
| (1) Dipel 2X                                       | 53         |
| (2) Protecto                                       | 53         |
| <b>b.</b> Spinosyns formulations                   | <b>5</b> 4 |
| (1) Tracer                                         | 54         |
| (2) Radiant                                        | 55         |
| c. Emamectin benzoate formulations                 | 56         |
| (1) Proclaim                                       | 56         |
| (2) Broact                                         | 57         |
| 2. Storage and photodegradation tests              | 58         |
| a. Storage tests                                   | 58         |
| <b>b.</b> Aqueous photolysis                       | 59         |
| (1) Preparation samples of <i>B.t</i> formulations | 60         |
| (2) Preparation samples of spinosyns and           |            |
| emamectin benzoate formulations                    | 6          |
| c. Photodegradation under UV light                 | 6          |
| (1) Preparation samples of <i>B.t</i> formulations | 62         |
| (2) Preparation samples of spinosyns and           |            |
| emamectin benzoate formulations                    | 62         |
| 3. Preparation samples for analyzed                | 6.         |
| <b>a.</b> Preparation samples of B.t.              | 6          |

# **CONTENTS** (continued)

| (1) Strain standard                                                      | 63         |
|--------------------------------------------------------------------------|------------|
| (2) Preparation samples of <i>B.t</i> formulations                       | 63         |
| (3) B.t Active ingredient determination                                  | 64         |
| <b>b.</b> Preparation samples of spinosyns and                           |            |
| emamectin benzoate                                                       | 65         |
| (1) Preparation of analytical standard curve                             | 65         |
| (2) Preparation samples of spinosyns and                                 |            |
| emamectin benzoate formulations                                          | 65         |
| (3) Active ingredient determination of spinosyns and                     | 1          |
| emamectin benzoate                                                       | 66         |
| 4. Half-life calculation                                                 | 66         |
| 5. Insect rearing and bioassays                                          | 67         |
| a. Insect source                                                         | 67         |
| <b>b.</b> Bioassays                                                      | 68         |
| 6. Statistical analysis                                                  | 69         |
| RESULTS                                                                  | 70         |
| 1. Effect of storage at different temperatures, shelf life               | e,         |
| and sunlight on active ingredient stability of                           |            |
| commercial formulations                                                  | <b>70</b>  |
| <b>a.</b> Effect of storage under accelerated hot storage and shelf life | 70         |
| <b>b.</b> Effect of storage under direct sunlight                        | 75         |
| 2. Effect of storage at different conditions on the                      |            |
| efficacy of bioinsecticides against S. littoralis (Boise                 | <b>l</b> ) |
| larvae                                                                   | <b>78</b>  |
| 3. Effect of various sources of water on bioinsecticide                  | S          |
| photolysis                                                               | 90         |
| 4. Photodegradation of bioinsecticide formulations                       |            |
| under UV light                                                           | <b>100</b> |
| DISCUSSION                                                               | 105        |
| CONCLUSIONS                                                              | 116        |
| SUMMARY                                                                  |            |
|                                                                          | 118        |
| REFERENCES                                                               | 118<br>124 |