

Faculty of Veterinary Medicine Department of Microbiology

Impact of Zinc Oxide Nanoparticles in growth and virulence of some foodborne bacteria

A Thesis presented by

Omnia Nashaat Abd-Elaziz

(B.V. Sc. Zagazig University 2008)

For the Degree of Master
In Veterinary Medical Science,
Microbiology (Bacteriology, Immunology and Mycology)

Under Supervision of

Prof. Dr. Mona I. El-Enbaawy

Professor and head of Microbiology Department Faculty of Veterinary Medicine Cairo University

Prof. Dr. Ahmed S. Mohamed

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Ahmed M. Ammar

Professor of Microbiology Faculty of Veterinary Medicine Zagazig University

Faculty of Veterinary Medicine Department of Microbiology

Supervision Sheet

A Thesis presented by:

Omnia Nashaat Abd-Elaziz

(B.V.Sc. Zagazig University 2008)

Under Supervision of:

Prof. Dr. Mona I. El-Enbaawy

Professor and head of Microbiology Department Faculty of Veterinary Medicine Cairo University

Dr. Ahmed Samir Mohamed

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Ahmed Mohamed Ammar

Professor of Microbiology Faculty of Veterinary Medicine Zagazig University Name: Omnia Nashaat Abd-Elaziz Birth date: 31/5/1986

Nationality: Egyptian Scientific degree: Master degree (Microbiology)

Title of Thesis: Impact of Zinc Oxide Nanoparticles in Growth and Virulence of

some foodborne bacteria

Prof. Dr. Mona I. El-Enbaawy

Professor and head of Microbiology Department – Faculty of Veterinary Medicine - Cairo University

Prof. Dr. Ahmed Samir Mohamed

Professor of Microbiology -

Faculty of Veterinary Medicine - Cairo University

Prof. Dr. Ahmed Mohamed Ammar

Professor of Microbiology –

Faculty of Veterinary Medicine - Zagazig University

ABSTRACT

The antibacterial activities of synthesized and commercial zinc oxide nanoparticles (ZnO NPs) were analyzed to ensure their effectiveness as food preservative against S. Typhimurium, S. aureus and E. coli. ZnO NPs were synthesized by a wet chemical method, identified and characterized by UVvisible spectrophotometer, Transmission electron microscope (TEM) and (XRD) for confirmation synthesis. The antibacterial activities of synthesized and commercial ZnO NPs were analyzed. Synthesized ZnO NPs showed inhibition for S. aureus, E. coli and S. Typhimurium with MIC 0.3 mg/ml, 0.6 mg/ml and 1.25 mg/ml respectively. while the MIC of commercial ZnO nanomaterial was found to be 0.15 mg/mL for S. aureus and 0.3 mg/mL for E. coli and S. Typhimurium. Using RT-PCR, the gene expression of gamma hemolysin (hlg) and aggregation genes (csgD) in media treated with subMIC concentration ZnO NPS were reduced. The present in vivo study was aimed to investigate the oral toxicity of ZnO NPs, Sprague Dawley rats were administered with 50, 200, 300 mg/kg body weight (b.w) of nanosized zinc oxide suspended in distilled water through oral gavage. The effects of ZnO NPs on some immunological parameters were analyzed on day 30 of administration. The organs were collected for histopathology. Interestingly, dose-dependent decrease in serum total protein and serum albumin. Also significant leukocytosis ($P \le 0.05$), a significant increase in neutrophil, and monocyte and a decrease in lymphocyte which are dose- dependent. The incidences of microscopic lesions in liver and kidney were higher in higher doses of ZnO NPs compared to the lower dose and control group.

Dedicated to my family

my father

my mother

my brother

my husband

my daughters (Hana & Alia)

and

my aunt (Dr. Eman El-Safy)

ACKNOWLEDGEMENT

First of all, I would like to thanks for our merciful ALLAH almighty, who gives me everything, who gives me the power and patience to carry out and complete this work.

Special gratitude and a lot of thanks to **Prof. Dr. Mona I. El-Enbaawy** Professor and head of Microbiology Department, Faculty of Veterinary Medicine, Cairo University for her great heart, kindness, recommendations and valuable advice for giving me the facilities to finish this work.

I would like to record my gratitude and my deep thanks to

Prof. Dr. Ahmed Mohamed Ammar Professor of Microbiology, Faculty of

Veterinary Medicine Zagazig University

I would like to record my gratitude and my deep thanks to **Prof. Dr. Ahmed Samir Mohamed** Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for his supervision, kind advice, efforts for supplying me with materials and crucial contribution during the course of this study. I would like to thank him a lot for his valuable supervision and help.

I would like to record my gratitude and my deep thanks to **Prof. Dr. Sahar Samir Mahmoud Abd El-Rahman** Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for her help, suggestions, and efforts to finish the in vivo study in the thesis.

Finally, I would like to thank **Dr. Hossam El-din Mahmoud** a lecturer of microbiology for his assistance in this work.

List of Contents

1. Introduction1
2. Review of literature4
2.1. Nanoparticles and food preservation 4
2.2. Synthesis of ZnO Nanoparticles 7
2.3. Antibacterial effect of ZnO Nanoparticles 14
2.4. Virulence genes
2.4.1. Virulence genes for <i>S. aureus</i>
2.4.2. Virulence genes of <i>E. coli</i> and <i>S.</i> Typhimurium
2.4.3. Effect of ZnO NPs on gene expression for microbial virulence
factor
2.5. Safety and toxicity of ZnO nanoparticles 34
3. Materials and Methods44
3.1. Materials44
3.1.1. Commercial ZnO NPs
3.1.2. Material used for synthesis ZnO NPs
3.1.3. Bacterial strains
3.1.4. Media
3.1.5. Materials used for biochemical confirmation
3.1.6. Stain
3.1.7. Material used for determination of minimal inhibitory
concentration

	3.1.8. Material used for extraction of DNA	.9
	3.1.9. Material used for PCR	0
	3.1.10. Material used for SYBR Green real time PCR 5	3
	3.1.11. Experimental animals	5
	3.1.12. Material used for immunological examination 5	6
	3.1.13. Chemicals used for routine histopathological	
	examination5	7
	3.1.14. Glassware and plastics, other materials	7
3	3.2. Methods	8
	3.2.1. Commercial ZnO nanoparticles	8
	3.2.2. Synthesis of ZnO nanoparticles	8
	3.2.3. Characterization of ZnO nanoparticles	8
	3.2.4. Confirmation of S. aureus, E. coli and S. Typhimurium 5	9
	3.2.5. Biochemical confirmation of <i>S. aureus</i> , <i>E. coli</i> and <i>S.</i>	
	Typhimurium5	9
	3.2.6. Determination of the MICs of synthesized and commercial ZnO NPs	Ω.
		7
	3.2.7. Detection of virulence gene of <i>S. aureus, E. coli</i> and <i>S.</i> Typhimurium by PCR (Pilot testing)	2
	3.2.8. Effect of sub-MIC concentration of commercial ZnO	
	nanoparticles on expression of virulence gene by real time	
	PCR6	6
	3.2.9 Oral toxicity of ZnO NPs	'n

4.Result73
4.1. Characterization of commercial ZnO NPs73
4.2. Synthesis of ZnO NPs73
4.3. Identification and characterization of synthesized
ZnO NPs74
4.4. Evaluation of the antibacterial effect of metal nanoparticles
(MIC)76
4.5. Results of Polymerase chain reaction (Pilot test)
4.6. Effect of Sub-MIC concentration of commercial ZnO NPs on
expression of (hlg and csgD) virulence genes78
4.7. Oral toxicity of ZnO NPs 84
4.7.1. Immunological results of different peripheral blood cells . 84
4.7.2. Results of some serum immunological parameters 88
4.8. Histopathological findings90
5. Discussion95
6. Summary114
7 References 116

List of Tables

Table (1): (Oligonucleotide primers sequences used in cPCR 51
Table (2):	Oligonucleotide primers used in SYBR Green real time
PCR	
Table (3): Ma	aster Mix preparation for PCR64
Table (4): C	Cycling conditions for amplification of virulence gene during
cPCR	
Table (5): Ma	aster Mix preparation SYBR green real time PCR68
Table (6): C	Cycling conditions during SYBR green real time PCR 69
Table (7):	The MIC values of ZnO NPs against S. aureus, E. coli and S.
Typhi	murium
Table (8) PO	CR result for presence of different virulence genes
Table (9): C	Changes in (hlg & csgD) Gene expression at sub-MIC doses
of Zno	O NPs nanoparticles
Table (10):	Result of Leukogram (control and ZnO NPs-
treated	d groups)85
Table (11):	Some serum biochemical parameters (control and ZnO NPs-
treated	d groups)

List of Photos

Photo (1): TEM images of	commercial ZnO NPs	73
Photo (2): TEM images of	synthesized ZnO NPs	76
Photo (3): Liver of control	l rat showing normal histological str	ructure of
the central vein (C) ar	nd hepatic cells (HC)	92
Photo (4): Kidney of contro	ol rat showing normal histological str	ructure of
the renal glomeruli (G	G) and renal tubules (T)	92
Photo (5): Liver of 50 n	ng/kg ZnO NPs administrated rat	showing
congestion of the cer	ntral vein (C) and hepatic sinusoid	s (arrow)
with mild swelling of	the hepatic cells	92
Photo (6): Liver of 50 n	ng/kg ZnO NPs administrated rat	showing
swelling and mild de	generation of the hepatic cells with	scattered
necrotic cells (arrow)		92
Photo (7): Kidney of 50 mg	g/kg ZnO NPs administrated rat show	ving mild
degenerative changes	s of the renal tubular epithelial lini	ings with
scattered appearance	of granular cast (arrow) in the lumer	n of some
tubules		92
Photo (8): Liver of 200 1	mg/kg ZnO NPs administrated rat	showing
hepatocellular swelli	ng, granular and vacuolar (dashe	d arrow)
_	crotic cells (arrow) with mild Kup	
activation (arrow head	d)(h	93
Photo (9): Liver of 200 1	mg/kg ZnO NPs administrated rat	showing
hepatocellular vacuola	ation, necrotic cells and apoptotic cel	lls 93
Photo (10): Kidney of 200	mg/kg ZnO NPs administrated rat	showing
moderate degeneratio	n (arrow) of the tubular epithelium,	scattered
	derate thickening of the parietal epitl	
the Bowman's capsulo	e (arrow head)	93

Photo (11): Kidney of 200 mg/kg ZnO NPs administrated rat showing
mild thickening of the glomerular basement membrane with mild
proliferation of the pariatal epithelium of the Bowman;s capsule
and mild hypercellularity of the glomerular tuft, notive vacuolar
deegenartion of the tubular epithelim
Photo (12): Liver of 300 mg/kg ZnO NPs administrated rat showing
congestion of the hepatic sinusoid, marked degeneration and
necrosis of the hepatic cells and marked activation of Kupffer cells
94
Photo (13): Liver of 300 mg/kg ZnO NPs administrated rat showing
severe hepatocellular swelling, vacuolar degeneration and necrosis
94
Photo (14): Kidney of 300 mg/kg ZnO NPs administrated rat showing
severe vacuolar degeneration, necrosis with scarttared nuclear
pyknosis of the renal tubular epithelium and inter-tubular
hemorrhages94
Photo (15): Kidney of 300 mg/kg ZnO NPs administrated rat showing
swelling of the glomerular tuft, vacuolation of the mesangium and
desquamated tubular epithelium and few granular cast
Photo (16): Kidney of 300 mg/kg ZnO NPs administrated rat showing
severe medullary intertubular hemorrhages

List of Figures

Figure (1):	The UV-VIS absorbance spectra of ZNO-NPs75
Figure (2):	The X-ray diffraction pattern of zinc oxide nanoparticles in
	powder sample
Figure (3):	Agarose gel electrophoresis of different virulence gene
	showing positive amplification of (hlg, icaD, csgD and stn)
	genes in tested strains and negative amplification of iss
	gene
Figure (4):	Amplification curves of SYBR green RT- PCR for staph
	16SrRNA gene showing variable CT values of control and
	treated samples
Figure (5):	Amplification curves of SYBR green RT- PCR for staph hlg
	gene showing variable CT values of control and treated
	samples
Figure (6):	Amplification curves of SYBR green RT- PCR for E. coli
	16SrRNA gene showing variable CT values of control and
	treated samples
Figure (7)	Amplification curves of SYBR green RT- PCR for
	salmonella 16S rRNA gene showing variable CT values of
	control and treated samples
Figure (8):	Amplification curves of SYBR green RT- PCR for (S.
	Typhimurium and E. coli) csgD gene showing variable CT
	values of control and treated samples 83
Figure (9)	:Result of Leukogram (control and ZnO NPs-treated
	groups)
Figure (10)	: % of non-segmented neutrophil (control and ZnO NPs-
	treated groups)

Figure (11): % of lymphocyte (control and ZnO NPs-treate
groups)8
Figure (12): % of monocyte (control and ZnO NPs-treate
groups)8
Figure (13): Total protein level(g/dl) (control and ZnO NPs-treate
groups)8
Figure (14): Albumin level (g/dl) (control and ZnO NPs-treate
groups)8

List of Abbreviations

Ag	Silver
AHRI	Animal Health Reasearch Institute
Alb	Albumin
ALP	Alkaline phosphatase
ALT	Alanine Transaminase
ANOVA	Analysis of Variance
AST	Aspartate Transaminase
BAS	Basophil
bp	Base pair
BUN	Blood Urea Nitrogen
BW	Body weight
CFU	Colony forming units
CLSI	Clinical and Laboratory Standards Institute
cPCR	Coventional Polymerase Chain Reaction
csgD	Curlin subunit gene D
CT	Cycle threshold
DLC	Differential Leukocytic Count
EDTA	Ethylene Diamine Tetra Acetic acid
EDX	Energy Dispersive X-Ray Spectrometer
ENMs	Engineered nanomaterial
EOS	Eosinophil
FDA	Food and Drug Administration
FT-IR	Fourier Transmitter Infrared
G.I.	Gastrointestinal

Globally Harmonized Classification System
Generally recognized as safe
Hemoglobin
Hematocrit
Hemolysin gamma
High Resolution Transmission Electron Microscopy
Intraperitoneal
Increased serum survival
Lymphocyte
Minimum bactericidal concentration
Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration
Mean corpuscular volume
Minimum inhibitory concentration
Monocyte
Neutrophil
Nanometer
No-observed-adverse effect level
Nanoparticles
Organization for Economic Cooperation and Development
Polymerase Chain Reaction
Platelet
Ribo Nucleic Acid
Reactive oxygen species
Real Time-Polymerase Chain Reaction