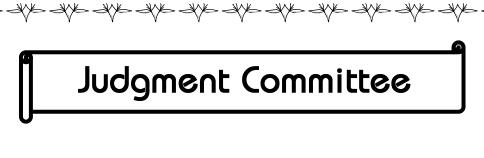





#### Prof. Hoda Abd El Kader Saleh


Professor of Oral and Maxillofacial Radiology
Faculty of Dentistry
Cairo University

#### Dr. Iman Ismail Dakhli

Associate Professor of Oral and Maxillofacial Radiology

Faculty of Dentistry

Cairo University



#### Dr. Mary Medhat Farid

Associate Professor of Oral and Maxillofacial Radiology Faculty of Dentistry

Ain Shams University

#### **Prof. Hany Omar**

Professor of Oral and Maxillofacial Radiology
Faculty of Dentistry
Cairo University

#### Prof. Hoda Abd El Kader Saleh

Professor of Oral and Maxillofacial Radiology,

Faculty of Dentistry

Cairo University

Before all and above all, thanks to Allah for everything

I would like to express my deepest gratitude and appreciation to **Prof. Hoda Abd El Kadr Saleh**, professor of Oral & Maxillofacial Radiology, Faculty of Oral and Dental Medicine, Cairo University, for her valuable guidance, instructive supervision, and sincere encouragement.

I'm also thankful for **Dr. Iman Ismail Dakhli**, associate professor Oral & Maxillofacial radiology, Faculty of oral and Dental Medicine, Cairo University, for her guidance and for directing me throughout the study.

Finally, I would like to thank all the **staff members** of the Oral Radiology Department, Faculty of Oral and Dental Medicine, Cairo and MTI University for their excellent support and cooperation





To my **father**, who taught me that the best kind of knowledge to have is that which is learned for its own sake and who taught me that even the largest task can be accomplished if it is done one step at a time.

To my **mother**, who taught me to make reading and learning a basic part of my personality, for her encouragement and inspiration to me throughout my life, and for providing a 'writing space'. To my **big family** whom made me very grateful to be a member of them.





### list of Contents

| label                                      | Page number             |
|--------------------------------------------|-------------------------|
| List of Abbreviations                      | I                       |
| List of Tables                             | III                     |
| List of Figures                            | VI                      |
| Introduction                               |                         |
| Review of Literature                       | 3                       |
| <b>Endodontic Strategies for Root Cana</b> | lls Identification10    |
| Radiographic Methods for Root Can          | al System Assessment17  |
| <b>Principles of Cone-Beam Computed</b>    | Tomographic Imaging23   |
| Strengths and Limitations                  | 39                      |
| CBCT Artifacts                             | 41                      |
| <b>Application of CBCT Imaging to Clin</b> | nical Dental Practice47 |
| PIRT and Research Question                 | 67                      |
| Aim of The Study                           | 69                      |
| Subject & Methods                          | 70                      |
| I. Tooth Sectioning:                       | 70                      |
| II. Image Evaluation:                      | 73                      |
| Statistical Analysis                       | 81                      |
| Results                                    | 82                      |
| Discussion                                 | 102                     |
| Summary and Conclusion                     | 109                     |
| Recommendations                            | 111                     |
| References:                                | 112                     |
| الملخص العربي                              | 131                     |

## list of Abbreviations

| MB1      | First Mesiobuccal Root Canal                  |
|----------|-----------------------------------------------|
| MB2      | Second Mesiobuccal Root Canal                 |
| MB3      | Third Mesiobuccal Root Canal                  |
| 3D       | Three-Dimensional                             |
| 2D       | Two-Dimensional                               |
| CBCT     | Cone-Beam Computed Tomography                 |
| CT       | Computed Tomography                           |
| μCΤ      | Micro Computed Tomography                     |
| MRI      | Magnetic Resonance Image                      |
| CCD/ IIT | Charge-Coupled Device/ Image Intensifier Tube |
| FPD      | Flat Panel Detector                           |
| CsI      | Cesium Iodide                                 |
| MPR      | Multiplanar Reformation                       |
| DVR      | Direct Volume Rendering                       |
| IVR      | Indirect Volume Rendering                     |
| MIP      | Maximum Intensity Profile                     |
| DICOM    | Digital Imaging and Communications in         |
|          | Medicine                                      |
| MSCT     | Multi-Slice Computed Tomography               |
| MDCT     | Multi-Detector Computed Tomography            |
| TMJ      | Temporomandibular Joint                       |
| SNR      | Signal to Noise Ratio                         |
| CNR      | Contrast to Noise Ratio                       |
| VRF      | Vertical Root Fractures                       |
| HRF      | Horizontal Root Fractures                     |
| RCs      | Root Canals                                   |
| IADT     | International Association of Dental           |
|          | Traumatology                                  |
| AAE      | American Association of Endodontists          |
| AAOMR    | American Academy of Oral and Maxillofacial    |
|          | Radiology                                     |
| ERR      | External Root Resorption                      |

| IAN   | Inferior Alveolar Nerve                 |
|-------|-----------------------------------------|
| ULD   | Ultra Low Dose                          |
| LED   | Light-Emitting Diode                    |
| EDTA  | Ethylenediaminetetra Acetic Acid        |
| SOM   | Surgical Operating Microscope           |
| ROI   | Region of Interest                      |
| ALARA | As Low As Reasonably Achievable         |
| SD    | Standard Deviation                      |
| AUC   | Area Under Curve                        |
| ROC   | Receiver Operating Characteristic Curve |
| FN    | False Negative                          |
| FP    | False Positive                          |
| PPV   | Positive Predictive Value               |
| NPV   | Negative Predictive Value               |
| PIRT  | P: Population                           |
|       | I: Index                                |
|       | R: Reference                            |
|       | T: Target                               |

### list of Tables

| Table 1: Detection of MB2 canal using 0.3 voxel size CBCT reformatted images versus root sectioning by observer 1                        | 83 |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Detection of MB2 canal using 0.3 voxel size CBCT reformatted images versus root sectioning by observer 2                        | 84 |
| Table 3: Detection of MB2 canal using 0.3 voxel size CBCT reformatted images versus root sectioning by observer 3                        | 85 |
| Table 4: Diagnostic accuracy of 0.3mm CBCT voxel size rating detection of MB2 canal versus root sectioning by all of the three observers | e  |
| Table 5: Detection of MB2 canal using 0.2 voxel size CBCT reformatted images versus root sectioning by observer 1                        | 86 |
| Table 6: Detection of MB2 canal using 0.2 voxel size CBCT reformatted images versus root sectioning by observer 2                        | 87 |
| Table 7: Detection of MB2 canal using 0.2 voxel size CBCT reformatted images versus root sectioning by observer 3                        | 88 |
| Table 8: Diagnostic accuracy of 0.2mm CBCT voxel size rating detection of MB2 canal versus root sectioning by all of the three observers |    |
| Table 9: Detection of MB2 canal using 0.125 voxel size CBCT reformatted images versus root sectioning by observer 1                      | 90 |

| Table 10: Detection of MB2 canal using 0.125 voxel size CBCT                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| reformatted images versus root sectioning by observer 29                                                                                  |
|                                                                                                                                           |
|                                                                                                                                           |
| Table 11: Detection of MB2 canal using 0.125 voxel size CBCT                                                                              |
| reformatted images versus root sectioning by observer 39                                                                                  |
| T 11 12 D                                                                                                                                 |
| Table 12: Diagnostic accuracy of 0.125mm CBCT voxel size rating in                                                                        |
| detection of MB2 canal versus root sectioning by all of the three                                                                         |
| observers9                                                                                                                                |
| Table 12. Overall diagnostic accuracy of all CDCT years sizes noting                                                                      |
| Table 13: Overall diagnostic accuracy of all CBCT voxel sizes rating in detection of MB2 canal versus root sectioning by all of the three |
| observers9                                                                                                                                |
| OUSELVELS                                                                                                                                 |
|                                                                                                                                           |
| Table 14: Fleiss Kappa results of inter-observer agreement for 0.3,                                                                       |
| 0.2 and 0.125 CBCT voxel sizes9                                                                                                           |
|                                                                                                                                           |
| Table 15: Detection of MB2 canal using 0.3 voxel size CBCT                                                                                |
| reformatted images versus root sectioning (Inter-observer                                                                                 |
| agreement)9                                                                                                                               |
|                                                                                                                                           |
| Table 16: Shown Sensitivity, Specificity, PPV, NPV, MB2 prevalence                                                                        |
| Diagnostic Accuracy, AUC and 95% CI of 0.3 CBCT voxel size9                                                                               |
| Diagnostic recurrecy, rice and so to or one obot voice size                                                                               |
| Table 17: Detection of MB2 canal using 0.2 voxel size CBCT                                                                                |
| reformatted images versus root sectioning (Inter-observer                                                                                 |
| agreement)9                                                                                                                               |
| ugi coment)                                                                                                                               |
| Table 18: Shown Sensitivity, Specificity, PPV, NPV, MB2 prevalence                                                                        |
| Diagnostic Accuracy AUC and 95% CI of 0.2 CBCT voxel size9                                                                                |

| Table 19: Detection of MB2 canal using 0.125 voxel size CBCT reformatted images versus root sectioning (Inter-observer agreement)  | .98 |
|------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 20: Shown Sensitivity, Specificity, PPV, NPV, MB2 prevalence                                                                 |     |
| Diagnostic Accuracy AUC and 95% CI of 0.125 CBCT voxel size                                                                        | 99  |
| Table 21: Comparison among the different CBCT voxel sizes (0.3, 0 and 0.125) versus root sectioning AUC in detection of MB2 canal1 |     |

# list of Figures

| Figure 1: Diagram showing maxillary molar with 4 canals: first            |
|---------------------------------------------------------------------------|
| mesiobuccal canal (MB1), secondary mesiobuccal canal (MB2),               |
| distobuccal canal (DB) and palatal canal (P). A; Maxillary molar          |
| with joining mesiobuccal canals. B; Maxillary molar with two              |
| separate mesiobuccal canals4                                              |
|                                                                           |
| Figure 2: Diagram showing classification of multiple canals in MB         |
| root of the maxillary molar tooth by Weine et al. Type I, Type II,        |
| Type III and Type IV were later expanded to include Type V                |
| configuration6                                                            |
|                                                                           |
| Figure 3: Diagram showing root canal classifications by Vertucci7         |
| rigure 3. Diagram showing root canar classifications by vertacer          |
|                                                                           |
| Figure 4: Diagram showing root canal classifications by Gulabivala        |
| et al 20019                                                               |
|                                                                           |
| Figure 5: Showing two mesial canals are distinguishable in the            |
| mandibular right first molar using two radiographs taken with the         |
| parallax technique, also note how the periapical radiolucent lesions      |
| change in size and radio-opacity with a change of angulation of the       |
| X-ray tube head18                                                         |
|                                                                           |
| Figure 6: Showing a case where the palatal vault is not high enough       |
| to allow the film to lie parallel to the long axis of the tooth resulting |
| in distortion of the image even though a beam-aiming device has been      |
| used                                                                      |

| Figure 7: Showing (a) The zygomatic arch is obscuring the apical anatomy of the maxillary molar teeth, (b) the radiolucent lesion (yellow arrow) on the mesial aspect of the mesiobuccal root may be difficult to accurately assess as it is superimposed over the radiolucent maxillary sinus                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 8: Showing (a) This mandibular left molar tooth immediately after completion of root canal treatment, (b) the tooth is reviewed 6 months later, there appears to be no change is the size of the periapical radiolucency, (c) if the angle of the X-ray tube head is changed by 10° there are definite signs of periapical healing20                                                                                                                                |
| Figure 9: Showing x-ray beam projection scheme comparing acquisition geometry of cone beam imaging (left) with conventional 'fan beam' CT (right)23                                                                                                                                                                                                                                                                                                                        |
| Figure 10: Showing, cone-beam imaging geometry25                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 11: Showing, classification of CBCT units according to the FOV. A, Large FOV scans provide images of the entire craniofacial skeleton, enabling cephalometric analysis. B, Medium FOV scans image the maxilla or mandible or both. C, Focused or restricted FOV scans provide high-resolution images of limited regions. D, Stitched scans from multiple focused FOV scans provide larger regions of interest to be imaged from superimposition of multiple scans30 |
| Figure 12: Showing, display mode options of CBCT volumetric data39                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 13: Showing, axial view demonstrating beam hardening (dark bands), scatter (white streaks), and cupping (image distortion) artifacts                                                                                                                                                                                                                                                                                                                                |
| Figure 14: Showing, pictorial plot of the effect of number of basis projection images. (A) Increasing number of projections provides                                                                                                                                                                                                                                                                                                                                       |

| more data and reduces image noise. (B) Reducing the number of projections creates undersampling and produces streaks43                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 15: Showing, blurring and double cortices (arrows) caused by motion artifact44                                                                                                                   |
| Figure 16: Showing, schematic of cone-beam related artifact. Centrally, the amount of data acquired is maximal, whereas peripherally (transparent blue), the amount of data collected is                |
| appreciably less, producing artifacts of increased noise, distortion, and reduced contrast45                                                                                                            |
| Figure 17: Showing, circular or ring artifact46                                                                                                                                                         |
| Figure 18: Showing, CBCT imaging for implant site assessment.  Reformatted panorama with thin slice image (B), serial thin-slice cross-section images (C)                                               |
| Figure 19: Showing, CBCT in diagnosis of localization of impacted teeth and identification of associated upper left canine root resorption which shown in C49                                           |
| Figure 20: Fusion image. Three-dimensional anatomic views demonstrate imaging possibilities with fusion of CBCT data and photographic image sets                                                        |
| Figure 21: (A) Axial and (B) sagittal CBCT images showing large lingual tonsils (black arrow) narrowing the airway of a patient51                                                                       |
| Figure 22: CBCT showing, a dome-shaped lesion arising from the floor of the Rt sinus, without mucosal thickening of the rest of the sinus, findings which is characteristic of a retention pseudocyst52 |