صفاء أبه السعود محمد

شبكة المعلومات الجامعية

بسم الله الرحمن الرحيم

-C-10-3-

ASUNET

شبكة المعله مات الجامعية

صفاء أبو السعود محمد

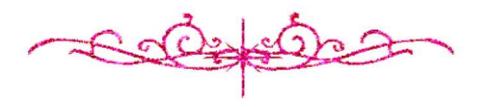
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

صفاء ابو السعود محمد

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم


قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

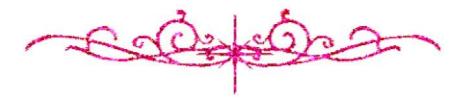
يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

المناسبة ال

شبكة المعله مات الجامعية

صفاء أبه السعود محمد


ASUNET

شبكة المعله مات الجامعية

صفاء أبه السعود محمد

بالرسالة صفحات لم ترد بالأصل

Quality Assurance in Developing an Information System

Thesis Submitted to
Institute of graduate studies and research
University of Alexandria

In Partial Fulfillment for the Degree of Master
In
Information Technology

By Shahenda Mahmoud Shalaby

University of Alexandria

2004

Supervisor

Dr. Shawkat Kamal Guirguis

Associate Professor of Computer Science Department of Information Technology Institute of Graduate Studies and Research Alexandria University.

ACKNOWLEDGEMENT

Thanks God for help and strength offered to me during this work.

I wish to express my sincere appreciation to my supervisor Professor *Dr. Shawkat Kamal Guirguis* Associate Professor of Computer Science Department of information technology, for his unlimited assistance, fundamental supervision, fruitful suggestions, powerful guidance, useful counsel, and specially for his patience, continuous encouragement and revising my work.

I would like to thank all my professors and colleagues in the institute of graduate studies and research, for their support and advice during the progress of the work.

I am deeply appreciative for the patience, understanding, encouragement and support given to me by my parents, my husband and my daughter during preparing the work.

ABSTRACT

The wide spread usage of computer applications in all fields and activities, being Industrial, scientific, commercial, general service and in communication lead to the increased importance to measure the software quality in order to justify the competition and to make sure that the application software will achieve all the users' requirements.

This thesis objectives are to design and implement a software tool to measure the quality of the software products by calculating the total and detailed quality value to be presented. The tool produces reports that present the reasons of bad quality results and the points that should be reviewed to get high quality values and estimate the quality factors weights to guide the user on their priorities.

Five software quality models have been selected to study, analyze and compare to reveal the differences between them and to suggest the recommended solution to calculate software quality element weights and values from different points of view. Finally implementation has been achieved using the designed software program to measure the software quality with the suggested methods using a predefined data sample for testing.

The important results and conclusions illustrate that the quality factors and criteria weights are not of the same importance. For instance, The functionality, reliability, efficiency and maintainability are very important quality factors. The total quality measurement shown as a percentage is a fake result and means nothing without the detailed measurement results.

Software Quality Assurance measurement is still fuzzy and should not be expected to measure software quality exactly, for that; the software quality assurance is still a major and very important field for further research.

TABLE OF CONTENTS

	Page
Chapter 1. Introduction	
1.1 Introduction	1
1.2 Aim of the Work	3
1.3 Thesis Overview	3
Chapter 2. Software Quality Literature Survey	
2.1 Quality Definitions	5
2.2 Software Quality Standards	7
2.2.1 The ISO 9000 Series of standards	7
2.2.2 The Capability Maturity Model (CMM)	9
2.2.3 A Comparison of ISO9000 and CMM	11
2.3 Software Quality Measurement	14
2.3.1 Software Quality Measurement Models	16
2.3.1.1 McCall Quality Model	16
2.3.1.2 Boehm et. al Model	18
2.3.1.3 FURPS Model	19
2.3.1.4 IEEE Model	20
2.3.1.5 ISO 9126-1 Model	23
2.3.1.6 The Capability Maturity Model (CMM)	26
a. The Five Maturity Levels	26
b. Key Process Areas (KPA)	26
c. Common Features	30
d. Key Practices	30
2.3.2 Software Quality Measurement Methods	31
2.3.2.1 Qualitative Software Quality Measurement	31
a. Measuring quality in the Analysis phase	31

b. Measuring quality in the Design phase	35
c. Measuring quality in the Coding phase	40
d. Measuring quality in the Testing phase	43
e. Development Documentation Review	43
f. Installation and Checkout Review	44
2.3.2.2 Quantitative Software Quality Measurement	45
a. Classes of Metrics	45
b. Quantitative Measurement Types	47
i) Size Measurement	47
ii) Time Measurement	49
iii) Count Measurement	51
cSoftware Quality Metric	53
i) Quality Metrics for Analysis	53
ii) Quality Metrics for Design	56
iii) Quality Metrics for Source Code	61
iv) Quality Metrics for Testing	63
v) Quality Metrics for Maintenance	65
Chapter 3. Design and Implementation	
3.1 Design and Implementation Objectives	66
3.2 Comparison between Quality Models	68
3.3 Classifications of the Criteria Measurement Answers	73
3.4 Rules to Transfer Criteria Value to Percentage	74
3.5 Rules to Determine Factor/Criteria Measurement Weight	75
3.5.1 Equal Criteria Weights	77
3.5.2 Proposed Criteria Weight	84
3.5.3 User Criteria Weight	89
3.6 Software Quality Measurement Evaluation Tool	92

3.6.1 The Tool Objectives	92
3.6.2 The Tool Design Description	92
3.6.2.1 The Evaluation Tool Entity Relationship Diagram	93
3.6.2.2 The Evaluation Tool Structure	94
3.6.2.3 The Evaluation Tool Functions Hierarchy	95
3.6.3 The Evaluation Tool User Interface	96
3.6.3.1 Quality Model Identification	97
3.6.3.2 User Requirement Weight Identification	99
3.6.3.3 Application System Identification and Quality Calculations	100
3.6.3.4 The Evaluation Tool Output Reports	102
Chapter 4. Data Sample for Testing and Research Results	
4.1 Data Sample for Testing the Evaluation Tool	105
4.2 Test Results	118
4.2.1 Metrics Values Computed	119
4.2.2 Quality Criteria Values from Different Views	123
4.2.3 Quality Factors Weights from Different Views	125
4.2.4 Quality Factors Values from Different Views	126
4.3 Final Research Results	127
Chapter 5. Conclusion and Recommendations	
5.1 Conclusion	129
5.2 Recommendations	130
References.	131

List of Tables

	Page
Chapter 2:	
Table 2.1 Differences between ISO9000 and CMM	12
Table 2.2 McCall Factor / Criteria	17
Table 2.3 FURPS Factor / Criteria	19
Table 2.4 IEEE Factor / Criteria	20
Table 2.5 ISO9126-1 Factor / Criteria	23
Chapter 3:	
Table 3.1 Comparison between criteria's names	69
Table 3.2 McCall model	79
Table 3.3 FURPS model	80
Table 3.4 IEEE model	81
Table 3.5 ISO9126 model	82
Table 3.6 Quality factor's weight using equal criteria weight	83
Table 3.7: Estimation of Quality In Use characteristics weights	. 84
Table 3.8 Recommended classifications of sub-characteristics	87
Table 3.9 Factors/Criteria default weights	88
Table 3.10 Quality criteria weight from different users views	91
Chapter 4:	
Table 4.1 Data sample for testing report	106
Table 4.2 Metric values report	119
Table 4.3 Quality criteria values from different views	123
Table 4.4 Quality factors weights from different views	125
Table 4.5 Quality factors values from different views	126

List Of Figures

	Page
Chapter 2:	
Figure 2.1 Reference for software quality standards	9
Figure 2.2 CMM software quality model concept	10
Figure 2.4 CMM levels	14
Figure 2.4 Software quality model constructions	. 15
Figure 2.5 McCall software quality factors	16
Figure 2.6 Boehm Model Characteristics	18
Figure 2.7 CMM levels and Key Process Areas (KPA)	27
Figure 2.8 Relationship between type of metrics	46
Chapter 3:	
Figure 3.1 Quality factor grouping	71
Figure 3.2 Quality factor range weight	83
Figure 3.3 Tool Entity Relationship Diagram (ERD)	93
Figure 3.4 Quality measurement tool structure [Context Diagram]	94
Figure 3.5 Tool Functions Hierarchy (FH)	95
Figure 3.6 Tool main menu	96
Figure 3.7 Editing user change criteria weight	99
Figure 3.8 Editing the user application data entry	100
Figure 3.9 Editing the collected data for quality evaluation	101
Figure 3.10 Sub characteristics description report	102
Figure 3.11 Product values report	103
Figure 3.12 Quality problems report	104
Chapter 4:	
Figure 4.1 Comparison of quality criteria values from Different Views	124
Figure 4.2 Comparison of quality factors weights from different Views	125
Figure 4.3 Comparison of quality factors values from different views	126

Chapter 1. INTRODUCTION