

Faculty of women for Arts, Science and Education Physics Department

"Establishing a National Standard System for calibration of UV Radiometers"

By Yasmen Abd Elbaset Ahmed

A Thesis Submitted to the Faculty of women for Arts, Science and Education
Ain Shams University
In Partial Fulfillment of the Requirements for the Degree of
M. Sc. In Physics (spectroscopy)

Supervising Committee

Ass. Prof. Dr. Sawsan Sayed Hamed

Physics Department
Faculty of women for Arts, Science and
Education
Ain Shams University

Ass. Prof. Dr. Sameh Mostafa Reda

radiometry Department National Institute of Standards (NIS)

(2019)

Faculty of women for Arts, Science and Education Physics Department

Approval Sheet

Name: Yasmen Abd Elbaset Ahmed

Title: Establishing a National Standard System for

calibration of UV Radiometers

Scientific Degree: Master Degree In Physics (spectroscopy)

Supervisors

Assoc. Prof. Dr. Sawsan Sayed Hamed

Physics Department
Faculty of women for Arts, Science and Education
Ain Shams University

Assoc. Prof. Dr. Sameh Mostafa Reda

Radiometry Department
National Institute of Standards (NIS)

Date of Research / /201

Post Graduate Studies

Stamp Date of approval

/ /201 / /201

Approved of Faculty Approved of University

Council council

Faculty of women for Arts, Science and Education Physics Department

Student Name : Yasmen Abd Elbaset Ahmed

Scientific Degree : Master Degree In physics (spectroscopy)

Department : Physics

Name of Faculty : Faculty of Women for Arts, Science and

Education

University : Ain Shams University

B. Sc. Graduation Date : 2011

Dedication to

My dear father,

My great mother,

My brothers and sisters,

My wonderful husband,

My lovely Kids

Acknowledgment

Firstly, the whole thanks and praise to **ALLAH** the lord of the worlds for helping and support me to complete this study.

From my heart, I would like to express my deepest thanks to my supervisor **Assoc. Prof. Dr. Sawsan Sayed Hamed**, Assoc. Prof. of Physics at the Physics Department, Faculty of women for Arts, Science and Education - University of Ain Shams, for her continuous supervision and kindly assistance as well as for her encouragement and patience during my thesis. I thank her for her valuable time and for her continuous guidance throughout.

I would like to express my deepest thanks with all gratitude to my supervisor & teacher Assoc. Prof. Dr. Sameh Mostafa Reda, the head of radiometry lab at National Institute of Standards, for his suggesting the topic and valuable guidance. He follows my work almost day by day with his valuable comments, ideas, and guidance as well as for his encouragement, patience, and interest throughout the course of the study.

Great thanks also to the **Faculty of women for Arts, Science and Education** especially the **physics department** for the continuous help and support.

Sincere thanks also to my colleagues, **Assoc. Prof. Dr. Alaa El Din Ahmed Abd El Mageed**, Assistant Professor National Institute of Standards; **Dr. Abd ALLAH Mohamed**, Researcher, National Institute of Standards; **Samaa medhat**, Assistant Researcher, National Institute of Standards; **moamen ragab**, Assistant Researcher, National Institute of Standards; **En. Ahmed Hasan**, Engineering; **Alaa El Din Mohey El Din**,

Technician; **Amer lotfy**, Technician, National Institute of Standards, for valuable help during this work.

From the depth of my heart, I am greatly indebted to all the members of my family especially **My Father** and **Mother**, **my brothers** and **my sisters** for big contribution in my life support throughout the years.

Finally, I am deeply thankful and profoundly grateful to my **husband Osama**, **my son Yahya** and **my daughter Fatma** for their love, care, pray, support, patience, and encouragement during the study period.

List of Contents

List	of A	bbreviations	I
List	of T	ables	III
List	of F	igures	IV
		y	
Chap			V 111
1.	Intı	oduction and Literature Review	1
1.1	Int	roduction	1
1.2	Ge	neral Review	3
1.2.	1 Cal	libration Methods	3
1.	2.1.1	Absolute spectral irradiance method based on standard lamp	ps3
1.	2.1.2	Absolute spectral power responsivity method	4
1.	2.1.3	Absolute thermoelectric radiometer method	7
1.	2.1.4	Electrically calibrated pyro electric radiometer method	8
1.	2.1.5	Comparing method based on standard radiometer	9
1.3	The	e aim of this study	13
Chap	ter (2	?):	
2.	The	eoretical Concepts	16
2.1	Int	roduction	16
2.2	Rae	diometric Aspects	22
2.2.	1 Ra	diometric and photometric quantities	22
2.2.2	2 Sol	id angle	25
2.2.3	3 Ra	diant energy Q, Radiant flux Φ (Power)	27
2.2.4	4 Ra	diant intensity I	28

	2.2.5	Irradiance E	30
	2.2.6	Radiance L	33
	2.2.7	Lambert's Law and Lambertian Source	35
	2.2.8	Spectral Quantities	37
	2.2.9	Measurement Uncertainty	38
	A.	Modeling the measurement	39
	B.	Type A uncertainty evaluation	39
	C.	Type B uncertainty evaluation	40
	D.	The combined standard uncertainty uc (y)41
	E.	The expanded uncertainty U	42
C	havte	n (3):	
_	, .		
3	. A	Apparatuses and Experimen	ital Methods43
	3.1	Apparatuses	45
	3.1.1	Optical Detectors and Light Sources	45
	3.1.	.1.1 Optical Detectors (Radiometers)	45
	A.	Thermal Detectors	46
	B.	Photon Detectors	48
	3.1.	.1.2 Light Sources	51
	3.1.2	Radiometric Traceability Chain	51
	3.1.	.2.1 Source-based Radiometry Standard	52
	A.	Black body	52
	B.	UV Sources	54
	1.	QTH Lamp (transfer standard)	54
	2.	Mercury Arc Lamp	56
	3.	Deuterium Lamp	58
	3.1.	.2.2 Detector-based Radiometry Standard	d59
	B.	Trap detector (national reference)	61
	3.1.3	Spectrometer	63

3.1.	3.1	Monochromator	63
A.	dou	ıble monochromator	64
3.1.	3.2	Mini-spectrometer	66
3.1.4	Filt	ers	68
3.2		Experimental Methods	69
3.2.1	Sou	arce Characterization	69
3.2.	1.1	Spectral Power Distribution	69
3.2.	1.2	Uniformity	70
3.2.	1.3	Stability	72
3.2.2	Cha	aracterization of UVA Filter	73
3.2.	2.1	Spectral Transmittance	73
3.2.	2.2	Spatial Uniformity	74
3.2.3	UV	A Detectors	75
3.2.	3.1	Spectral Responsivity	75
3.2.	3.2	Spatial Uniformity	77
3.2.	3.3	Linearity	78
3.2.3	Cal	ibration Method	80
3.2.4	Qua	ality control assurance	81
Chapte	r (4	·):	
4. I	Res	ults and Discussion	86
4.1.	Cha	aracterization of UV Sources	86
4.1.	1.	Spectral power distribution	86
4.1.	2.	Uniformity	89
4.1.	3.	Source stability	94
4.2.	UV	A Filter Characterization	95
4.2.	1.	Spectral Transmittance	95
4.2.	2.	Spatial uniformity	97
4.3.	Cha	aracterization of UVA Detector	99

4.3.1	1. Spectral responsivity	99
4.3.2	2. Spatial uniformity of responsivity	101
4.3.3	3. Linearity of response of UVA detector	104
4.4.	The calibration results	107
4.4.	1 Uncertainty component	108
4.5.	Quality assurance of the results	110
4.6.	Practical application	112
Concl	usion	113
Refere	ences	116
العربي	الملخص	1

List of Abbreviations

		OI / NOOI CVICETOIIG		
Abb.		Full Term		
UV	:	Ultra Violet		
ISO	:	International Organization for		
		Standardization		
VIM	:	International Vocabulary of Basic and		
		General Terms in Metrology		
NMIs	:	National Metrology Institutes		
FEL	:	modified incandescent lamps		
ECPR	:	Electrically Calibrated Pyroelectric		
		Radiometer		
NIST	:	National Institute of Standards and		
		Technology		
PDA	:	Photo Diode Array		
PMOD	:	Physikalisch Meteorologische		
		Observatorium Davos		
WRC	:	World Radiation Center		
QASUME	:	Quality Assurance of Spectral Ultraviolet		
		Measurements		
PTB	:	Physikalisch-Technische Bundesanstalt		
CUCF	:	Central UV Calibration Facility		
CIE	:	Commission International de l'Eclairage		
\mathbf{EM}	:	Electro Magnetic		
UVR	:	Ultra Violet Radiation		
BIPM	:	International Bureau of Weights and		
		Measures		
CCD	:	Charge-Coupled Device		
QTH	:	Quartz Tungsten-Halogen		
ESR	:	Electrical Substitution Radiometer		
GUM	:	Guide to the expression of Uncertainty in		
		Measurement		
MC	:	Monte Carlo		
LPU	:	Law of Propagation of Uncertainties		
QE	:	Quantum Efficiency		
		1		

List of Abbreviations

Abb.	Full Term		
TRAMP	: Trans-impedance Amplifier		
UDT	:	United Technology Instrument	
FWHM	:	Full Width at Half Maximum	
ANSI	:	American National Standards Institute	
Hg	:	Mercury	
QC	:	Quality Control	
QA	:	Quality Assurance	
UCL	:	Upper Control Limit	
LCL	:	Lower Control Limit	
CW	:	Central Wavelength	

List of Tables

Table No.	Title	Page No.
Table 1	Subdivisions of UV radiation with its particular	
	range, effects and applications	19
Table 2	Common applications of radiometry	21
Table 3	Summarization of Radiometric and Photometric	
	quantities and units	23
Table 4	Comparison between thermal and photon detector	50
Table 5	Control chart constants	85
Table 6	the results of irradiance uniformity measurements	
	for the three lamps	93
Table 7	the results of calibration for 268UVA detector	
	against the national reference detector	107
Table 8	Uncertainty Budget for the Calibration of UVA radiometer	109

List of Figures

Figure No.	Title	Page No.
Figure 1	Radiometric traceability chain of ultraviolet detector cal-	ibration
	(Detector – based)	15
Figure 2	The Electromagnetic spectrum	18
Figure 3	The plane angle and solid angle at the center of the sphe.	re26
Figure 4	The radiant power of a light source.	27
Figure 5	The radiant intensity	29
Figure 6	radiant flux dΦ incident on a surface dA	31
Figure 7	The simple definition and difference between Irradiance	and Exitance.
		32
Figure 8	Definition of radiance and related projected area	34
Figure 9	Example of lambert's law application	36
Figure 10	Schematic diagram of the UV calibration system	44
Figure 11	Spectral response comparison between photon and ther	mal detectors.
		47
Figure 12	Schematic diagram of black body radiator	53
Figure 13	FEL lamp	55
Figure 14	Hg Arc lamp with its house and power supply	57
Figure 15	Deuterium lamp with its house and power supply	58
Figure 16	Basic principle of a cryogenic radiometer.	60
Figure 17	Three-element Reflection trap detector	62
Figure 18	Sketch of monochromator component.	65
Figure 19	schematic diagram of double monochromator	65
Figure 20	Optical system layout of mini-spectrometer	67
Figure 21	Experimental setup for measuring spectral power distri	bution69
Figure 22	Uniformity measuring system	70
Figure 23	Setup used for non-uniformity caused by (a) Response	of the active
	area of the detector and (b) irradiation field	71
Figure 24	Measurement setup for source stability	72
Figure 25	Measurement setup for spectral transmittance of UVA	filter73
Figure 26	Measurement setup for spatial uniformity of UVA filte	r74
Figure 27	Schematic diagram of spectral responsivity measureme	nt setup76
Figure 28	Measurements setup for spatial uniformity of UVA det	ector77
Figure 29	Linearity measurement setup	79

Figure 30 Spectral distribution of three common sources used in calibration of
UV radiometers8
Figure 31 Relative UV and Visible intensity for the three lamps88
Figure 32 Spatial uniformity of (a) QTH lamp, (b) Hg Arc lamp and (c)
Deuterium lamp89
Figure 33 Spatial uniformity of beam spot for Hg arc lamp with lens90
Figure 34 Spatial uniformity of beam spot for Hg arc lamp with lens and UVA
filter9
Figure 35 Stability of the QTH, Deuterium and Mercury arc lamps94
Figure 36 Spectral transmittance of I8A 365 filter, ZBPA 365-Band pass filter
and BP 365/12 EX DELTA filter96
Figure 37 Spatial uniformity of I8A 365 filter98
Figure 38 Spatial uniformity of ZBPA 365 –Band pass filter98
Figure 39 Spectral responsivity of UVA detectors99
Figure 40 Spectral response of UVA detector and spectral band width of the
UVA filters100
Figure 41 Spatial responsivity distribution of D1 detector
Figure 42 Spatial responsivity distribution of D2 detector
Figure 43 Linearity measurements of the D1 detector
Figure 44 Linearity measurements of the D2 detector
Figure 45 The range chart.
Figure 46 The average chart