

Phenotypic and Genotypic Characterization of *Staphylococcus aureus* Isolated from Raw Camel Milk Samples from Libya and its Histopathological Effects on Mice Liver

A Thesis

Submitted for the Degree of doctor of Philosophy (Ph.D) in Science (Zoology)

By

Ebtesam Mohamed Abdraba Mohamed

(B.Sc., M. Sc.)

Department of Zoology, Omr Al Mokhtar University (Libya)

Under the Supervision of

Prof. Dr. Nagui Hassan Fares

Professor of Cell Biology and Histology Faculty of Science – Ain Shams University (Cairo – Egypt)

Prof Dr. Sherif Mousa Hussieny

Professor of Microbiology
Faculty of Girls – Ain Shams University
(Cairo – Egypt)

Prof Dr. Yomna Ibrahim Mahmoud

Professor of Cell Biology and Histology Faculty of Science – Ain Shams University (Cairo – Egypt)

Dr. Nawara Aboelgasim Mohammed Eissa

Associate Professor of Microbiology
Faculty of Veterinary Medicine – Omar Elmokhtar University
(Libya)

2019

سورة البقرة الآية: ٣٢

All the praises and thanks be to **Allah**, the most beneficent and merciful of all.

My profound appreciation is due to **Prof. Dr Magui Hassan Fares,** Professor of Cell Biology and Histology, Zoology Department, Faculty of Science, Ain Shams University for suggesting the point, his precious advice, continous encouragement, and for his critical reading of the manuscript. It is a great honor to work under his supervision. His research experience has added a lot to the integrity of thesis.

I would like to express my gratitude to **Prof. Dr Sherif**Mousa Hussieny, Professor of Bacteriology, Faculty of Girls – Ain
Shams University, for his continuous support and valuable efforts
during stages of this study.

I am greatly indebted to **Prof. Dr Yomna Ibrahim**, Professor of Histology and Cell Biology, Zoology Department, Faculty of Science, Ain Shams University for her valuable guidance and careful reading of the manuscript, unlimited assistance, instructive guidance and kind support. No word of thanks can equal her contribution.

I owe much to **Dr Mawara Aboelqusim Mohammed**, Associate Professor of Bacteriology, Faculty of Veterinary Medicine-Omar Elmoktar University, El-Beida, Libya, for suggesting the point, reading of the manuscript, continous encouragement and kind support.

Ebtesam Mohamed Abdraba

Content

Title	Page No.
Introduction	i
Aim of Study	12
Review of Literature	13
Materials and Methods	36
3.1. Collection of Milk Samples	30
3.2. Primary isolation and identification procedures	33
3.2.1. Visual Examination of cultures	34
3.2.1.1 Nutrient agar	34
3.2.1.2 Sheep blood Agar	35
3.2.1.3 MacConkey agar	35
3.3 Selective and differential media	36
3.3.1 Mannitol Salt Agar	36
3.3.2 Baird-Parker Agar Base	36
3.3.3 Deoxyribonuclease (DNase) medium	37
3.4 Identification of <i>S. aureus</i>	38
3.4.1 Microscopic examination	38
3.4.2 Biochemical tests	39
3.4.2.1 AVIPATH Staph (CERTIFIED, UK)	39
3.4.2.3.1 Test procedure	39
3.4.2.2 Coagulase test	40
3.4.2.2.1 Collection of Plasma	40
3.4.2.2.2 Test procedure	40
3.4.2.3 Catalase test	41
3.5 Molecular detection the S. aureus DNA by Qualitativ	'e PCR 41
3.5.1 Materials and reagent used for Qualitative PCR	42
3.5.1.1 Chemicals	42
3.5.1.2 Kits	43
3.5.1.3 Supplies	43

Content

Title	Page No.
3.5.1.4 Reagents and Solutions	43
3.5.2 Extraction of DNA from Bacteria samples	46
3.5.3 PCR Amplification:	48
3.5.4 Analysis of amplified DNA	49
3.6 Histological Experiments	50
3.6.1 Animals	50
3.6.2 Bacterial strain	50
3.6.3 Final experimental design	51
3.6.4 Gross morphology	51
3.6.5 Sample collection	51
3.6.6 Histological Procedures	52
Results	59
Discussion	108
Summary	117
References	
List of Tables	i
List of Figures	ii
List of Abbreviations	
Abstract	6
Arabic Summary	

List of Tables

Table N	o. Title	Page No.
Table (1):	Locations, coordinates and numbers of milk san	nples38
Table (2):	History and relevant information on she-camel	s from
	which milk samples were collected	39
Table (3):	List of used primers, thermocycler-program	s and
	amplicon sizes of the applied PCR reactions	in the
	present study	48
Table (4):	Prevalence of S. aureus isolated from she-	camels
	milk in Libya	59
Table (5):	Cultural and staining characteristics of S. a	ureus
	isolated from She- Camels Milk	64
Table (6):	Identification tests of six microbial isolates from	m she-
	camels milk	66
Table (7):	The body weight and relative liver weight	of the
	control, sec-, and tst – infected groups	71

List of Figrures

Figure N	lo. Title	Page	No.
Figure (1):	Culture plate of β-hemolysis on 5% sheep blood by microbial isolate.	_	60
Figure (2):	Culture plate fermentation of MSA by S. aureus		61
Figure (3):	S. aureus on Barid parker agar		62
Figure (4):	S. aureus on DNase Agar		63
Figure (5):	Coagulase test		66
Figure (6):	Agarose gel electrophoresis patterns showing amplified products in qualitative PCR for indentions. <i>aureus 23s rRNA</i> gene	ifying	68
Figure (7):	Agarose gel electrophoresis patterns showing amplified products in qualitative PCR for indentitist enterotoxin gene for <i>S. aureus</i>	ifying	68
Figure (8):	Agarose gel electrophoresis patterns showing amplified products in qualitative PCR for indentisec enterotoxin gene for <i>S. aureus</i>	ifying	69
Figure (9):	Histogram showing the body weight, liver weight relative liver weight of the control, <i>sec-</i> , and infected groups.	d tst-	71
Figure (10):	Liver of control group		73
Figure (11):	Liver of control group		73
Figure (12):	Liver of S. aureus (sec)-infected group		73
Figure (13):	Liver of S. aureus (sec)-infected group		73
Figure (14):	Liver of S. aureus (tst)-infected group		73
Figure (15):	Liver of S. aureus (tst)-infected group		73
Figure (16):	Phtomicrograph of C.S. of mouse liver of cogroup showing its normal architecture		76
Figure (17):	High power photomicrograph of C.S. of mouse from the control group		78

List of Figrures Cont...

Figure N	o. Title	Page No.
Figure (18):	High power photomicrograph of C.S. of mouse from the control group	
Figure (19):	High power photomicrograph of C.S. of mouse from the control group	
Figure (20):	Photomicrograph of C.S. of liver from S. a (sec)-infected group	
Figure (21):	High power photomicrograph of C.S. of liver fraureus (sec)-infected group	
Figure (22):	High power photomicrograph of C.S. of liver fraureus (sec)-infected group	
Figure (23):	High power photomicrograph of C.S. of liver fraureus (sec)-infected group	
Figure (24):	High power photomicrograph of C.S. of liver fraureus (sec)-infected group	
Figure (25):	Photomicrograph of C.S. of liver from <i>S. aureus</i> infected group	
Figure (26):	Photomicrograph of C.S. of liver of <i>S. aureus</i> infected group	
Figure (27):	Photomicrograph of C.S. of liver of <i>S. aureus</i> infected group	
Figure (28):	High power photomicrograph of C.S. of liver fraureus (tst)-infected group	
Figure (29):	High power photomicrograph of C.S. of liver fraureus (tst)-infected group	
Figure (30):	High power photomicrograph of mice liver aureus (tst)-infected group	
Figure (31):	High power photomicrograph of mice liver of S. aureus (tst)-infected group	

List of Abbreviations

Abb. Meaning C.S. Cross Section CFU.....Colony forming units Chisam Chloroform-iso-amyl alchol CMT.....California mastitis test **CNS** Cogulase nagtive staphylococci **CPS**.....Coagulase positive staphylococci **DNA** Deoxyribonucleic acid **Dnase**......Deoxyribouuclease **EDTA**..... Etheline diamine tetra acetic acid **GST**Glutathione-S-transferase Hx. & E. Hematoxylene and Eosin LAB.....Lactic acid bacteria LB Medium Lauria-Bertani medium **LF**.....Left-fore LHLeft-hind MSA Mannitol salt agar **PBS**.....Phosphate buffer saline PCR.....Polymerase chain reaction PTS Ags Pyrogenic toxin superantigens **RF**.....Right-fore RH Right-hind RNA Ribonucleic acid RNase A Ribonuclease A rRNA.....Ribosomal RNA S. aureusStaphylococcus aureus

List of Abbreviations Cont...

Abb.	Meaning
SCC	Somatic cell count
sec	S. aureus gene that produces SEC
SEC	Staphylococus enterotoxin C
ß-toxin	beta toxin
Tris	Tris (hydroxymethly) aminomethane
TSST	Toxic shook syndrome toxin
<i>tst</i>	S. aureus gene that produces TSST
U.A.E	United Arab Emirates
UV	Ultraviolet light
Y-toxin	Gamma toxin
α - toxin	Alpha toxin

ABSTRACT

The present study was conducted to determine the phenotypic and hereditary description of Staphyllococcus aureus (S. aureus) isolated from raw camel milk from different regions in Libya (Tubrak, Shahat, Alsafsaf, Omar Al Mokhtar, Makailie, Labrag, and Gardas) as well as to identify the different toxin genes of these bacteria. Out of the total 220 milk samples collected from 55 teats of apparently healthy lactating shecamels, 6 coagulase positive Staphylococcus spp were obtained. These 6 (2.7 %) isolates were identified as S. aureus based on cultural and biochemical properties. All of the 6 isolates showed β-hemolysis on blood agar media enriched with 5% sheep blood. Gram-stained smears of the pure cultures exhibited clusters of Gram-positive cocci. The isolates also fermented mannitol with the color change of MSA and production of small yellow colonies. Isolates were positive for catalase and coagulase tests. The species identity of all 6 isolates could be confirmed by PCR amplification of the S. aureus-specific chromosomal DNA fragment using 23s rRNA primer for 23s rRNA gene. The ability to synthesize classical enterotoxins was found in 3 of 6 (50%) isolates by using the qualitative PCR technique. The enterotoxin gene (sec) was identified in two isolates (33.3%), while the enterotoxin gene (tst) was identified in only one isolate (16.7%).

The study was also planned to investigate the histopathological changes of the liver of two groups of mice after intraperitoneal injection of one dose (0.1ml) of S. aureus (sec) and S. aureus (tst) aqueous solutions at a concentration of $5 \times 10^8 / 0.1\text{ml}$. The relative weight of the liver of S. aureus (tst)-infected mice was significantly increased as compared with the control group and the S. aureus (sec)-infected. Liquid-filled abscesses appeared on the liver surfaces of the infected groups. Histopathological studies showed several microscopic changes in the liver of infected groups including inflammatory cells infiltration, hepatic cell degeneration, preiductal fibrosis, and the appearance of black spots thought to be colonies of S. aureus bacteria in association with inflammatory cells.

1. INTRODUCTION

Camels are important source for milk production in nomadic societies. Camel milk is supposed to have medicinal properties, as it contains insulin-like protein, so it has hypoglycemic effect. Milk is an excellent source of nutrients for human (Abrhaley and Leta, 2018) and, yet in a different context, it provides a suitable medium for microbial growth and metabolism. In raw milk, bacteria can affect the quality, safety and consumer acceptance of dairy products. Nonpathogenic bacteria may affect milk and milk products quality (Samaržija et al., 2012). Thus, many countries have milk quality regulations, including limits on the total number of bacteria in raw milk, to ensure the quality and safety of the final product. The number and types of microorganisms in milk, immediately after milking, are affected by several factors such as animal health, equipment cleanliness, season, and food. It hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk (Swai and Schoonman, 2011).

Staphylococcus spp (S. spp) are microorganisms that are naturally present in milk and dairy products. Gabriela et al. (2009) reported that they are often associated with food-borne disease outbreaks due to the ability of some strains to produce a thermostable enterotoxins. Diseases are usually associated with coagulase and thermonuclease positive Staphylococcus aureus

(S. aureus). Milk is a good substrate for S. aureus growth and enterotoxin production. Enterotoxins are thermostable to heat retaining some biological activity even after 28 minutes at 121°C. The bacterium is also capable of producing several pathological conditions in human. Pathogens can invade the teat canal ascending toward the mammary parenchyma, then colonize, multiply and produce their toxins, and finally predispose to mastitis. So, teat skin should be free from microbial contamination lesions to maintain the health of animals (Ahmed et al., 2010). A high percentage of subclinical mastitis in camels is reported by several authors (Barbour et al., 1985; Abdurahman et al., 1995; Obeid et al., 1996; Almaw and Molla, 2000). The pathogenic bacteria reported by different scientific groups in camels are similar to those associated with mastitis in cows or other animals kept in traditional nomadic environments or camel farms (Barbour et al., 1985; Almaw and Molla, 2000).

In 1880, *S. aureus* was first discovered by a surgeon named Sir Clifton Smith in pus from surgical abscesses in Aberdeen, Scotland (*Ogston*, *1984*). It is a nonmotile, nonsporeforming, Gram positive, aerobic facultative anaerobic coccus, with the appearance of grape-like clusters when viewed through a microscope. *S. aureus* cells are spherical and are about 1µm in diameter. They form a cluster arrangement because of their special division way. These cells divide in

three dimensional axis, and the new cells remain attached to each other followed by each division successively.

S. aureus is catalase positive and oxidase negative. The catalase test is an important, yet simple, method to distinguish staphylococci from streptococci, which are catalase negative (Raus and Love, 1983). Typical S. aureus has large, round, creamy smooth colonies with golden yellow color. Most strains have beta or alpha hemolysis when growing on blood agar plates (Kloos and Schleifer, 1975). S. aureus can survive for several hours on dry environmental surfaces and grow at a temperature range of 7 to 48°C (Neely and Maley, 2000). There are about 32 described species of Staphylococcus (Kloos and Bannerman, 1994), but S. aureus is the only pathogen of increasing importance due to the rise in antibiotic resistance (Lowy, 1998).

Infectious agents have caused epidemic and endemic diseases involved in the deaths of hundreds of millions of humans, as well as significant animal morbidity and mortality throughout history (*Musser and DeLeo*, 2015). S. aureus is a widespread Gram-positive coccus that is both a human commensal bacterium and pathogen. Approximately 50% to 60% of individuals are intermittently or permanently colonized with S. aureus and, thus, there is relatively high potential for infections (*Wertheim et al.*, 2005; Gorwitz et al., 2008). A relatively high percentage of healthy people are asymptomatically colonized with S. aureus in the anterior nares