

STUDY OF THE POLYMORPHISM *Bsml* AND *Taql* IN VITAMIN D RECEPTOR GENE IN EGYPTIAN PATIENTS WITH CHRONIC KIDNEY DISEASE

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Clinical Pathology

By

Farida Mohamed Khanany Mohamed
M.B., B.Ch. & M.Sc. Clinical Pathology, Ain Shams University

Under Supervision of

Professor/ Mona Mostafa Osman

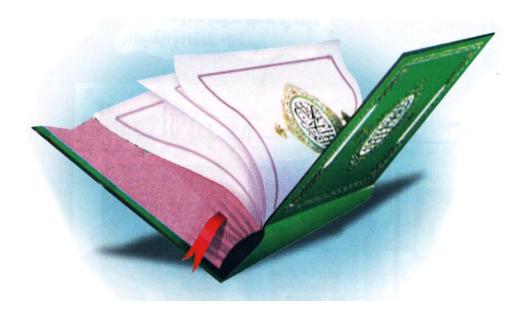
Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Professor/Iris Guirguis Nessim

Professor of Clinical Pathology Theodor Bilharz Research Institute

Professor/ Abeer Ibrahim Abd-ElMageed

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University


Doctor/ Hoda Ahmed Abd-Elsattar

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University
2019

بسيرالله الرحمن الرحيم

إِنَّا فَتَحْنَا لَكَ فَتَحًا مُبِينًا

صدق الله العظيم [سورة: الفتح - الآية: ١]

Acknowledgment

I would like to thank **ALLAH** a lot for His kindness and patience He gave to me to achieve this work and made me able to finish it.

I wish to express my deepest thanks, gratitude and appreciation to **Professor**/ **Mona Mostafa Osman**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her meticulous supervision and revision of this work, kind guidance, valuable instructions and generous help.

I would like to express my deepest gratitude to **Professor**/ **Iris Guirguis Messim**, Professor of Clinical Pathology,
Theodor Bilharz Research Institute, for her great help,
sincere efforts, and fruitful encouragement throughout the
whole work.

Special thanks are due to **Professor**/ **Abeer Ibrahim Abd-ElMageed**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her guidance, help and support throughout the work, for giving me much of her time, her valuable comments and efforts. Her encouragement was so supportive for the completion of this work.

Really I can hardly find the words to express my gratitude to **Doctor/** Hoda Ahmed Abd-Elsattar, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

I would like to dedicate this Thesis to my Father and my Mother, really I can't do anything without them, so no words can express my gratitude to them.

Farida Mohamed Khanany

List of Contents

7itle	Page No.
List of Tobles	e
List of Tables List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	4
I- Chronic Kidney Disease	5
A. Definition of Chronic Kidney Disease:	
B. Epidemiology of Chronic Kidney Disease:	
C. Risk Factors of Chronic Kidney Disease:	
D. Aetiology of Chronic Kidney Disease:	
E. Classification and Prognosis of CKD by Glomeru	
Filteration Rate and Albuminuria Category:	
1. Creatinine clearance test:	
2. Estimated GFR (eGFR):	
II- Chronic Kidney Disease-Mineral and Bone Disorder	
A. Introduction:	
B. Definition of CKD-MBD:	
C. Pathophysiology of the CKD-MBD:	
1. Hyperparathyroidism:	
2. Vitamin D deficiency:	
3. Hypocalcaemia and hyperphosphataemia:	
4. Fibroblast growth factor 23:	
5. Bone disorder:	
6. Cardiovascular disease:	
D. Diagnosis of CKD-MBD:	
1. Laboratory diagnosis of CKD-MBD:	
2. Biochemical markers of bone turnover in CF	
MBD:	
3. Radiological diagnosis of CKD-MBD:	
4. Bone biopsy in CKD-MBD:	

List of Contents cont...

Title	Page No.
E. KDIGO Guidelines for Monitoring Diagnosis at Treatment of CKD-MBD:	47
1. KDIGO, 2017 guidelines in chronic kidney disea patients:	
2. KDIGO, 2017 guidelines in patients with CK G3a-G5D with evidence of CKD-MBD patients and/or risk factors for osteoporosis, KIDGO, 20	$\stackrel{ ext{KD}}{ ext{nts}}$
suggests:	48
3. KDIGO, 2017 guidelines for treatment of abnorm iPTH levels in CKD-MBD patients:	
III- Vitamin D Receptor	
A. Introduction:	
B. The Vitamin D Receptor Structure:	51
C. Vitamin D Receptor Tissue Distribution:	
D. Mechanism of Action of Vitamin D Receptor:	53
E. Vitamin D Receptor Gene Polymorphism:	
F. Diseases associated with VDR gene polymorphism:	
1. Chronic kidney disease and VDR gene polymorphism	
2. Bone disease and VDR gene polymorphisms:	59
3. Cancer and VDR gene polymorphisms:	61
G. Methods of VDR Gene Polymorphism Determinatio	n:62
1. Conventional polymerase chain reaction (PCR):	62
2. Restriction fragment length polymorphism (RFLF):64
3. Real time polymerase chain reaction (real time	ie-
PCR):	64
4. Sequencing:	
5. Denaturing high-performance liquid chromatography	····69
Subjects and Methods	72
Results	
Discussion	136
Summary and Conclusion	
Recommendations	
References	154
Arabic Summary	

List of Tables

Table No.	Title Page No.
Table 1:	Stages and prognosis of CKD by GFR and
	albuminuria categories9
Table 2:	Definition of CKD-MBD and renal osteodystrophy15
Table 3:	Bone Biomarkers used in Clinical Practice46
Table 4:	The primer sequences used for $BsmI$ and $TaqI$ VDR
	gene polymorphisms analyses89
Table 5:	PCR protocols used for VDR polymorphism
	analyses89
Table 6:	Incubation conditions and the expected product
	sizes for VDR polymorphisms in RFLP90
Table 7:	The PCR reaction mixture:91
Table 8:	The thermocycler programs for amplification of the
	VDR gene:91
Table 9:	BsmI Restriction Enzyme:97
Table 10:	TaqI Restriction Enzyme98
Table 11:	Descriptive statistics of the various studied routine
	laboratory parameters in the different studied groups: 117
Table 12:	Statistical comparison between the different studied
	groups regarding various studied routine laboratory
	parameters using Wilcoxon Rank Sum test:118
Table 13:	Distribution and comparison of VDR BsmI and
	TaqI genotypic polymorphism and their allelic
	frequencies between group 1(CKD-MBD patients)
	and group 2 (healthy control) using Chi-Square test
	and z test:
Table 14:	VDR TaqI gene polymorphism in group 1 (CKD-
	MBD patients) and group 2 (healthy controls) with
	Odds Ratio (OR) and 95% Confidence Interval (CI): 122
Table 15:	Distribution and comparison of VDR BsmI and
	TaqI genotypic polymorphism and their allelic
	frequencies between subgroup 1a and subgroup 1b
	using Chi-Square test and z test:125
Table 16:	Descriptive and comparative statistics of the
	different studied routine laboratory parameters
	between various genotypes of VDR $BsmI$
	Polymorphism in the different groups using
	Kruskall Wallis test:

Tist of Tables cont...

Table No.	Title	Page No.
Table 17:	Comparative statistics of the different studied laboratory parameters between various genoward VDR BsmI Polymorphism in the different using Wilcoxon Rank Sum test: Descriptive and comparative statistics	types of groups 129
Table 18:	different studied routine laboratory parabetween various genotypes of <i>VDR</i> Polymorphism in the different groups Kruskall Wallis test:	ameters ? TaqI s using
Table 19:	Comparative statistics of the different routine laboratory parameters between genotypes of <i>VDR TaqI</i> Polymorphism different studied groups using Wilcoxon Ra	studied various in the nk Sum
Table 20:	Descriptive and comparative statistics be different <i>VDR BsmI</i> genotypes in decategories of serum 25-OH Vitamin D leagroup 1 (CKD-MBD patients) and group 2 (etween ifferent evels in
Table 21:	control) using Chi-Square test: The association between the presence of d <i>VDR BsmI</i> genotypic polymorphism and de of 25 OH vitamin D in CKD-MBD patients 1) using Odds Ratio (OR) and 95% control of the control	ifferent ficiency s (group afidence
Table 22:	intervals (CI):	etween ifferent evels in healthy
Table 23:	The association between the presence of d VDR TaqI genotypic polymorphism and de of 25 OH vitamin D in CKD-MBD patients 1) using Odds Ratio (OR) and 95% con intervals (CI):	ifferent ficiency s (group afidence

List of Figures

Fig.	No.	Title Pag	e No.
Fig	ure 1:	Chronic kidney disease-mineral and bone disorder	
Fig	ure 2:	Regulation of iPTH Production	
Fig	ure 3:	Calcium Homeostasis	20
Fig	ure 4:	Phosphate Homeostasis	21
Fig	ure 5:	The physiological interactions between bone, the	
		kidney, parathyroid glands and vasculature	
Fig	ure 6:	Possible factors involved in bone fragility. Both	
		mineral metabolism disorders and uremic	
		condition induce bone fragility	26
Fig	ure 7:	Vitamin D receptor gene	51
Fig	ure 8:	Schematic representation of the vitamin D receptor	
		(VDR) domain structure	
Fig	ure 9:	Overview of the Vitamin D Signaling Pathway	54
Fig	ure 10:	Chromosomal and protein domains of the Vitamin	
		D receptor gene.	56
Fig	ure 11:	Structure of the vitamin D receptors (VDR) gene on	
		locus 12q.13.1 and position of some polymorphisms	
Fig	ure 12:	Single Nucleotide Polymorphisms identified in VDR gene	
Fig	ure 13:	The steps involved in the PCR, consisting of: DNA	_
Ū		denaturation, annealing of the oligonucleotide	;
		primers to the single-stranded target sequence(s)	,
		and the final extension by a DNA polymerase	63
Fig	ure 14:	Showing target DNA strand hyberdized with a	L
		probe (Real time PCR)	65
Fig	ure 15:	Real time PCR steps	67
Fig	ure 16:	A diagram illustrating hypothetical DNA	L
		fragments from a heterozygous individual analyzed	_
		by DHPLC	70
Fig	ure 17:	Denaturing high performance liquid	
		chromatography (DHPLC) can reveal single	
		nucleotide variation in DNA samples	
_		Principle of PCR-RFLP	
_		Agarose gel preparation.	
Fig	ure 20:	Sample loading for detection of PCR products	}
		using agarose gel electrophoresis	94

List of Figures cont...

Fig. No.		Page No.
Figure 21:	Steps for detection of PCR products using electrophoresis and ultraviolet transillumination	light
Figure 22:	Detection of the bands of different genotypy $VDR BsmI$ gene polymorphism in agarose gelultraviolet transillumination	pes of using
Figure 23:	Detection of the bands of different genotypy VDR <i>TaqI</i> gene polymorphism in agarose gelultraviolet transillumination	pes of using
Figure 24:	Detection of the bands of different genotypy $VDR\ BsmI$ gene polymorphism in agarose gelultraviolet transillumination	pes of using
Figure 25:	Detection of the bands of different genotypy $VDR\ TaqI$ gene polymorphism in agarose gel ultraviolet transillumination.	pes of using
Figure 26:	Distribution of <i>VDR BsmI</i> genotypic polymor in group 1(patients with CKD-MBD) and gr (healthy control)	phism oup 2
Figure 27:	Distribution of <i>VDR BsmI allelic</i> frequence group 1(patients with CKD-MBD) and group 1	ies in oup 2
Figure 28:	(healthy control)	phism oup 2
Figure 29:	Distribution of <i>VDR TaqI allelic</i> frequenc group 1(patients with CKD-MBD) and group thealthy control).	ies in oup 2
Figure 30:	Distribution of <i>VDR BsmI</i> genotypic polymor in subgroup 1a (CKD-MBD stages 3 and 4 subgroup 1b (CKD-MBD stage 5)	phism 1) and
Figure 31:	Distribution of <i>VDR BsmI</i> allelic frequence subgroup 1a (CKD-MBD stages 3 and 4	ies in) and
Figure 32:	bistribution of <i>VDR TaqI</i> genotypic polymorn in subgroup 1a (CKD-MBD stages 3 and 4)	phism (1) and
Figure 33:	subgroup 1b (CKD-MBD stage 5)	ies in) and

List of Abbreviations

Abb.	Full term
25-OH VIT D	25hydroxy vitamin D
<i>AAS</i>	Atomic absorption spectrophotometry
<i>ACR</i>	Albumin/creatinine ratio
<i>AE</i>	Acridinium ester
<i>AER</i>	Albumin excretion rate
<i>AMP</i>	2amino-2-methyl-1-propanol
<i>bALP</i>	Bone alkaline phosphatase
<i>BCP</i>	Bromcresol purple
<i>BGP</i>	Bone gla protein
<i>BMD</i>	Bone mineral density
<i>bp</i>	Base pair
Ca	Calcium
<i>CaR</i>	Calcium sensing receptors
<i>CDC</i>	Centres for disease control and prevention
<i>Cdx</i>	Caudal-related homeodomain protein
<i>CI</i>	Confidence intervals
<i>CKD</i>	Chronic kidney disease
CKD-MBD	Chronic kidney disease – mineral bone disorder
<i>Conc</i>	Concentration
<i>CPBA</i>	Competitive protein binding assay
<i>Cr</i>	Creatinine
<i>CT</i>	Computed tomography
<i>CTX</i>	Products of type I collagen C-telopeptide
<i>CVD</i>	Cardiovascular disease
	DNA binding domain
<i>DM</i>	Diabetes mellitus
	Deoxy ribonucleic acid
	Denaturing high-performance liquid chromatography
	Deoxynucleotide triphosphates
<i>DXA</i>	Dual X-ray absorptiometry
	Ethylene diamine tetra-acetic acid
	Estimated glomerular filtration rate
EGIPT-CKD.	Egypt Information, Prevention, and Treatment of Chronic Kidney Diseases Program
<i>EIA</i>	Enzymatic assay
	Enzyme-linked immunosorbent assay
	End-stage renal disease

Tist of Abbreviations cont...

Abb.	Full term
FBG	Fasting blood glucose
FGF23	$oldsymbol{}$ Fibroblast growth factor 23
<i>FITC</i>	Anti-fluorescein labeled
<i>GFR</i>	Glomerular filtration rate
<i>GLDH</i>	Glutamate dehydrogenase
	Hepatocellular carcinoma
<i>HPLC</i>	High-performance liquid chromatography
HVDRR	Hereditary vitamin D-resistant rickets
<i>ICTP</i>	Products of type I collagen C-telopeptide
<i>ID-MS</i>	Isotope dilution-mass spectrometry
<i>iPTH</i>	Intact Parathyroid hormone
<i>IQR</i>	Inter-quartile range
<i>IRMA</i>	immunoradiometric assay
<i>ISE</i>	Ion-selective electrodes
<i>K/DOQI</i>	Kidney Disease Outcome Quality Initiative
	Potassium Chloride
kda	Kilo Dalton
<i>KDIGO</i>	Kidney Disease Improving Global Outcomes
KDIGO-MBL	D Kidney Disease Improving Global Outcomes-
	Mineral Bone Disease
	Ligand-binding domain
	Liquid chromatography mass spectrometry
	Left ventricular hypertrophy
	Microalbuminuria
	Modification of diet in renal disease formula
	Magnesium Chloride
	Mass spectrometry
	Nucleic acid
	Next-generation" or "second-generation" sequencing
	National Kidney Disease Education Program
	National kidney foundation
	Products of type I collagen N-telopeptide
	Osteocalcin
<i>OR</i>	Odds ratio

Tist of Abbreviations cont...

Abb.	Full term
PCR- RFLP	Polymerase chain reaction-restriction fragment
	$length\ polymorphism$
<i>Pcr</i>	Plasma creatinine
<i>PCR</i>	Polymerase Chain Reaction
Pi	Phosphorus
<i>PICP</i>	Procollagen type 1 C propeptides
<i>PINP</i>	Procollagen type 1 N propeptide
<i>PMP</i>	Paramagnetic particles
	Quantitative computed tomoghraphy
<i>RANKL</i>	Receptor activator of nuclear factor κ-B ligand
RFLP-PCR	Restriction fragment length polymorphism-
	$polymerase\ chain\ reaction$
<i>RFLPs</i>	Restriction Fragment Length Polymorphisms
<i>RIA</i>	Radioimmunoassay
<i>RO</i>	Renal Osteodystrophy
<i>RT</i>	Room temperature
<i>RXR</i>	$oldsymbol{}$ Retinoid X receptor
<i>SNP</i>	Single nucleotide polymorphism
<i>SPSS</i>	Statistical package for the social science
<i>T.Bil</i>	Total Bilirubin
<i>TAE</i>	Tris-acetate EDTA buffer
<i>TBE</i>	Tris-borate EDTA buffer
TRAP5b	Tartrate resistant acid phosphatase
<i>Ucr</i>	Urinary creatinine
<i>UK</i>	United Kingdom
<i>URL</i>	Upper reference limit
<i>UTR</i>	Untranslated region
<i>UV</i>	Ultraviolet
<i>V</i>	Volume of urine
<i>VDDR2A</i>	Vitamin D-dependent rickets type 2A
<i>VDR</i>	Vitamin D receptor
<i>VDRE</i>	Vitamin D response elements
<i>WHO</i>	World health organization

Introduction

hronic kidney disease (CKD) is a major public health problem and a leading cause of morbidity and mortality worldwide, accounting for 60% of all deaths, affecting 5–10% of the world population with an ever-increasing prevalence. Estimated Prevalence of CKD (Stages 3-5) in the World is nearly 200-333 million (*Kidney Disease Improving Global Outcomes (KDIGO)*, 2012), while the prevalence of end-stage renal disease patients in Egypt per million population is about 522 (*Soliman et al.*, 2012).

Chronic kidney disease mineral and bone disorders (CKD-MBD) is a common complication of CKD and an important cause of morbidity and decreased life quality (*Delanaye et al.*, 2014). CKD-MBD comprises a group of interrelated abnormalities of either one or a combination of the following: *i*) serum bone biomarkers: calcium, phosphorus, parathyroid hormone (iPTH), or vitamin D metabolism, *ii*) bone: bone turnover, mineralization, volume, linear growth or strength and *iii*) the vasculature: arterial calcification (*Al Rukhaimi et al.*, 2014). It is clinically detectable as early as stage (2) CKD. Up-to 20% of death in dialysis patients may be associated with poorly controlled CKD-MBD, illustrating the importance for its management efficiently (*Evenepoel et al.*, 2015).

Serum levels of 25-hydroxy vitamin D and iPTH provide an accurate picture of bone turnover and mineralization states. Therefore, they could be used with other serum bone biomarkers as non-invasive sensitive bone markers to help management of MBD in CKD patients as recommended by the Kidney Disease Improving Global Outcome- mineral and bone disorders (KDIGO.MBD) (*Sprague et al.*, *2015*).

The kidney is the main site for the conversion of 25-hydroxyvitamin D to circulating 1, 25-dihydroxyvitamin D. Vitamin D receptor (VDR) is a transcription factor that mediates the genomic effects of vitamin D. It is activated by 1, 25-dihydroxyvitamin D to induce/repress genes that maintain mineral homeostasis and skeletal integrity, and prevent secondary hyperparathyroidism, hypertension, immune disorders, renal and cardiovascular damage as the VDR is widely expressed in many tissues and cells such as heart, kidney, immune cells, brain and muscle (*Dusso*, 2011; Zhou et al., 2014).

The VDR gene is located on chromosome 12q12.14. The VDR-regulated gene products tightly coordinate intestinal calcium and phosphate absorption, bone metabolism, renal calcium and phosphate reabsorption, and parathyroid function to prevent or slow the development of secondary hyperparathyroidism, phosphate retention, and soft-tissue calcifications (*Khadijeh et al.*, 2014).

There have been several VDR gene polymorphisms named according to the restriction sites, such as VDR *BsmI* (rs1544410), Fok1 (rs2228570), ApaI (rs7975232) and TaqI (rs731236). The VDR gene polymorphisms have been shown to drive the progression toward secondary hyperparathyroidism and influence the response to calcitriol and the survival in CKD patients (**Zhou et al., 2014**).

Due to the complex role played by vitamin D in kidney disease, the genotyping for VDR variants in CKD patients has been regarded as a way for improving the management of the disease, given that some VDR genotypes have been proven to influence the responsiveness to therapeutical approaches (Santoro et al., 2015).