

Removal of some metal ions from water matrices using high performance separation technique and nano-sorbents

A Thesis submitted by

Mahmoud Ibrahim Ahmed Ibrahim Elserw

M.Sc Inorganic and Analytical Chemistry (2015)

For the degree of Doctor of Philosophy in Science, Ph.D. (Chemistry)

Supervised by

Prof. Dr. Saad S. M. Hassan (D.Sc.)

Emeritus Professor of Analytical and Environmental Chemistry,

Faculty of Science, Ain Shams University. Prof. Dr. Mohamed E. Mahmoud

Emeritus Professor of Analytical Chemistry,

Faculty of Science,
Alexandria University.

Chemistry Department Faculty of Science

Ain Shams University

2019

Removal of some metal ions from water matrices using high performance separation technique and nano-sorbents

A thesis for Ph.D. Degree in chemistry submitted by

Mahmoud Ibrahim Ahmed Ibrahim Elserw

M.Sc. Inorganic and Analytical Chemistry (2015)

Approved by	Signature
Prof. Dr. Saad Elsayed Mohamed Hassan (D.Sc.) Emeritus Professor of Analytical and Environmental Cher Faculty of Science, Ain Shams University.	nistry,
Prof. Dr. Mohamed Elsayed Mahmoud Emeritus Professor of Analytical Chemistry, Faculty of Science, Alexandria University.	•••••
Prof. Dr. A. B. Farag Professor of Analytical Chemistry, Faculty of Science, Helwan University	
Prof. Dr. Mona Abd Elaziz Ahmed Professor of Analytical Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University.	•••••

Head of Chemistry Department Prof. Dr. Ibrahim H.A. Badr

Ain shams University Faculty of Science Chemistry Department

Removal of some metal ions from water matrices using high performance separation technique and nano-sorbents A thesis Submitted By Mahmoud Ibrahim Ahmed Ibrahim Elserw

M.Sc. Inorganic and Analytical Chemistry (2015)

Supervision Committee

Supervisor name	Occupation	Signature
Prof. Dr. Saad Elsayed Mohamed Hassan (D.Sc.)	Emeritus Professor of Analytical and Environmental Chemistry, Faculty of Science, Ain Shams University.	
Prof. Dr. Mohamed Elsayed Mahmoud	Emeritus Professor of Analytical Chemistry, Faculty of Science, Alexandria University.	

Acknowledgment

Praise to Allah, the most gracious and the merciful who guides us to the right way. First of all, I would like to thank Allah who helped me during my work and only by his will, this work was accomplished.

I owe a real debt of gratitude and appreciation to my perfect thesis supervisors: **Prof. Dr. Saad S. M. Hassan**; Emeritus Professor of Analytical and Environmental Chemistry, Faculty of Science, Ain Shams University. and **Prof. Dr. Mohamed E. Mahmoud**; Emeritus Professor of Analytical Chemistry, Faculty of Science, Alexandria University, for suggesting the research plan of this thesis and for their valuable guidance, constant encouragement before and during all the stages of this work as well as providing the necessary facilities in order to bring this thesis to complete and finalize the thesis in its present form.

I would like to express my thanks to my lab mates for their continuous support, advices, encouragement and constructive instructions during the various stages of this work .

Finally, I would not be where I am today and this thesis would not have been possible without the unconditional support I have from my family, for which I am truly grateful.

List of Abbreviations

AOP	Advanced oxidation processes
APTS	3-Aminopropyltrimethoxysilane
COD	Chemical oxygen demand
CVC	Chemical vapor condensation
CWAO	Catalytic wet air oxidation
EDL	Electrodeless discharge lamp
FT-IR	Fourier transform infrared
GAC	Granulated activated carbon
HR-TEM	High resolution-transmission electron microscope
MAE	Microwave-assisted extraction
MAS	Microwave-assisted sorption
MECD	MW enhanced catalytic degradation
MES	Microwave-enforced sorption
MW	Microwave
MWDP	MW with direct photolysis
MWPC	MW with photocatalysis
N-Si	Silica nanoparticles (nanosilica)
N-Si-Glu	Nanosilica-immobilized-glutathione
N-Si-Gly	Nanosilica-immobilized-glycine
N-Si-Sa	Nanosilica-immobilized-salicylic acid
N-Si-Su	Nanosilica-immobilized-succinic acid
N-Si-Vit.C	Nanosilica-immobilized-vitamin C
N-Si-Vit.L	Nanosilica-immobilized-vitamin L

PCP	Pentachlorophenol
PEGMA	poly(ethylene glycol) methacrylate
PMMA	polymethyl methacrylate
PPGMA	poly(propylene glycol) methacrylate
SEM	Scanning electron microscope
TEOS	Tetraethylorthosilicate
TGA	Thermal gravimetric analysis
TOC	Total organic carbon
TTIP	Titanium tetra isopropoxide
VTS	Vinyltriethoxysilane
WW	Wastewater
XRD	X-ray diffraction

Contents

1	Chapter (I) Introduction	1
1.1.	Removal of heavy metal ions from wastewaters	1
1.2.	Conventional processes for removal of heavy metals	2
1.3.	Adsorption	3
1.3.1.	Adsorption on modified natural materials	4
1.3.2.	Adsorption on industrial by-products	4
1.3.3.	Adsorption on modified agriculture and biological wastes (Biosorption)	5
1.3.4.	Adsorption on modified biopolymers and hydrogels.	5
1.4.	Remarks of heavy metal treatment methods	7
1.5.	Microwave (MW)	8
1.5.1.	Mechanism of microwave action	8
1.5.2.	MW in chemical reactions	10
1.5.3.	MW application in wastewater treatment	11
1.6.	MW alone	12
1.7.	MW with oxidants	13
1.8.	MW with catalyst	14
1.9.	MW with Fenton process	17
1.10.	MW in photochemical reactions	18
1.10.1.	MW with direct photolysis (MWDP)	21
1.10.2.	MW with photocatalysis (MWPC)	21
1.10.3.	Comparison of MWDP and MWPC	22
1.11.	Factors affecting MW reactions	24

1.11.1.	MW with oxidants/catalysts	26
1.11.2	MW-photochemical reactions	27
1.12.	Evaluation of status of microwave application in wastewater treatment	30
1.13.	Microwave-assisted synthesis	31
1.14.	Microwave-assisted extraction	34
1.15.	Classification of nanoparticles	36
1.16.	Silica nanoparticles	37
1.16.1.	Synthesis of silica nanoparticles	37
1.16.2.	Size-dependent properties of silica nanoparticles	40
1.16.2.1.	Physicochemical properties	40
1.16.3.	Surface modification of silica nanoparticles	42
1.16.3.1.	Chemical treatments	42
1.16.3.2.	Grafting of synthetic polymers	47
1.16.4.	Applications of modified silica nanoparticles	51
1.16.4.1.	Removal of heavy metal ions utilizing batch technique	51
1.16.4.2.	Removal of heavy metal ions utilizing microwave- assisted sorption	54
	Aim of the work	56
2	CHAPTER (II) Experimental	57
2.1.	Materials and reagents	57
2.2.	General procedures for synthesis of modified nanosilica sorbents	59
2.2.1.	Activation of nanosilica sorbent	59
2.2.2.	Functionalization of N-Si with glycine	59

2.2.3.	Anchoring of glutathione (reduced form) on nanosilica sorbent	60
2.2.4.	Mechanochemical mixing and microwave-assisted functionalization of activated nanosilica with salicylic and succinic acids under solvent-free conditions	62
2.2.5.	Mechanochemical mixing and microwave-assisted immobilization of activated nanosilica with vitamins C and L under solvent-free conditions	63
2.3.	Instrumentations	65
2.4	Microwave-assisted sorption of metal ions by functionalized N-Si.	68
2.4.1	Heating time impact on the microwave-assisted sorption values	68
2.4.2	pH impact on the microwave-assisted sorption values	68
2.4.3	Nanosorbents dosage impact on the microwave-assisted sorption values	69
2.4.4	Initial metal ion concentration impact on the microwave- assisted sorption values	69
2.4.5	Coexisting ions impact on the microwave-assisted sorption values	69
2.4.6	Metal ions uptake from real water utilizing microwave- assisted sorption technique.	70
3	CHAPTER (III) Results and Discussion	72
3.1.	N-Si-immobilized-amino acids	72
3.1.	Characterization of the modified nanosorbents	72
3.2.	Metal uptake and sorption studies by microwave-assisted sorption values	86
3.3.	Applications of N-Si-Glu and N-Si-Gly sorbents in the uptake of metal ions from different water matrices utilizing microwave-assisted sorption procedure	113
3.4.	Characterization of the N-Si-Sa and N-Si-Su sorbents	117
3.5.	Metal uptake and sorption studies	126

3.6.	Potential applications of N-Si-Sa and N-Si-Su sorbents in the removal of metal ions from water samples using MES procedure	150
3.7.	Characterization of (N-Si-Vit.C) and (N-Si-Vit.L)	153
3.8.	Adsorption studies	163
3.9.	Removal of seven examined metals utilizing adsorption by MW heating technique.	187
4	CHAPTER (IV) Conclusion and Recommendations	190
5	CHAPTER (V) References	192

List of Figures

1	CHAPTER (I) INTRODUCTION	1
1.1	The interaction of MW with different materials	9
1.2	Performance of MECD with MW-absorbing catalyst and carbon supported metal catalyst in the degradation of different compounds .	17
1.3	Comparison of MW, MWDP and MWPC for different pollutants	23
1.4	(a) Effect of MW power on increase in reaction temperature in MW with an AC system. (b) Effect of MW power on the mineralization of H-acid (as TOC) and petroleum refinery WW (as COD)	25
1.5	Dimensionality classification of nano-structures	36
1.6	Variation of silanol concentration and silanol number with particle size of silica	43
1.7	Variation of BET surface area with particle size of the	43
3	CHAPTER (III) RESULTS AND DISSCUSIONS	72
3.1	FT-IR spectra of nanosilica sorbents	75
3.2	SEM-images of nanosilica sorbents	77
3.3	HR-TEM images of nanosilica sorbents at a magnification of 40,000X	79
3.4	TGA of nanosilica sorbents	82
3.5	XRD patterns of nanosilica sorbents	85
3.6	Effect of pH on the microwave-assisted sorption values by N-Si-Glu.	93
3.7	Effect of pH on the microwave-assisted sorption values by N-Si-Gly.	93
3.8	Effect of sorbent dosages on the microwave-assisted sorption values by N-Si-Glu.	97
3.9	Effect of sorbent dosages on the microwave-assisted sorption values by N-Si-Gly.	97

3.10	Effect of metal ion concentration on the microwave-assisted	103
3.11	sorption values by N-Si-Glu. Effect of metal ion concentration on the microwave-assisted sorption values by N-Si-Gly.	103
3.12	Sorption isotherm models of Mg(II) by N-Si-Glu and N-Si-Gly	104
3.13	Sorption isotherm models of Ca(II) by N-Si-Glu and N-Si-Gly	105
3.14	Sorption isotherm models of Ni(II) by N-Si-Glu and N-Si-Gly	106
3.15	Sorption isotherm models of Cu(II) by N-Si-Glu and N-Si-Gly	107
3.16	Sorption isotherm models of Cd(II) by N-Si-Glu and N-Si-Gly	108
3.17	Sorption isotherm models of Pb(II) by N-Si-Glu and N-Si-Gly	109
3.18	Sorption isotherm models of Hg(II) by N-Si-Glu and N-Si-Gly	110
3.19	Removal of metal ions from water matrices utilizing MES procedure by N-Si-Glu.	116
3.20	Removal of metal ions from water matrices utilizing MES procedure by N-Si-Glu.	116
3.21	FT-IR spectra of nanosilica sorbents	119
3.22	SEM-images of nanosilica sorbents at a magnification of 50,000X	121
3.23	HR-TEM-images of nano-silica sorbents at a magnification of 40,000X.	122
3.24	TGA of nano-silica sorbents	124
3.25	XRD patterns of nano-silica sorbents	125
3.26	Effect of pH on the MES values by N-Si-Sa.	132
3.27	Effect of pH on the MES values by N-Si-Su.	132
3.28	Effect of sorbent dosage on metal sorption capacities by N-Si-Sa	135
3.29	Effect of sorbent dosage on metal sorption capacities by N-Si-Su	135
3.30	Effect of metal ion concentration on the metal capacity value by N-Si-Sa.	138

3.31	Effect of metal ion concentration on the metal capacity value by N-Si-Sa.	138
3.32	Sorption isotherm models of Mg(II) by N-Si-Sa and N-Si-Su sorbents	140
3.33	Sorption isotherm models of Ca(II) by N-Si-Sa and N-Si-Su sorbents	141
3.33	Sorption isotherm models of Ni(II) by N-Si-Sa and N-Si-Su sorbents	142
3.35	Sorption isotherm models of Cu(II) by N-Si-Sa and N-Si-Su sorbents	143
3.36	Sorption isotherm models of Cd(II) by N-Si-Sa and N-Si-Su sorbents	144
3.37	Sorption isotherm models of Pb(II) by N-Si-Sa and N-Si-Su sorbents	145
3.38	Sorption isotherm models of Hg(II) by N-Si-Sa and N-Si-Su sorbents	146
3.39	Removal of metal ions from water matrices utilizing MES procedure by N-Si-Sa.	152
3.40	Removal of metal ions from water matrices utilizing MES procedure by N-Si-Su.	152
3.41	FT-IR spectra of (a) nanosilica sorbent, (b) N-Si-Vit.C and (c) N-Si-Vit.L	155
3.42	SEM-images of nanosilica sorbents at a magnification of 35,000X.	157
3.43	HR-TEM images of nanosilica sorbents at a magnification of 40,000 X.	158
3.44	TGA of nanosilica sorbents	161
3.45	XRD patterns of nanosilica sorbents	162
3.46	Effect of pH on the MW-assisted sorption values by N-Si-Vit.C.	168
3.47	Effect of pH on the MW-assisted sorption values by N-Si-Vit.L.	168
3.48	Effect of nanosorbent dosage on the MW-assisted sorption values by N-Si-Vit.C.	172
3.49	Effect of nanosorbent dosage on the MW-assisted sorption values by N-Si-Vit.L.	172

3.50	Effect of metal ion concentration on the MW-assisted sorption values by N-Si-Vit.C.	175
3.51	Effect of metal ion concentration on the MW-assisted sorption values by N-Si-Vit.L.	175
3.52	Sorption isotherm models of Mg(II) by N-Si-Vit.Cand N-Si-Vit.L sorbents	177
3.53	Sorption isotherm models of Ca(II) by N-Si-Vit.Cand N-Si-Vit.L sorbents	178
3.54	Sorption isotherm models of Ni(II) by N-Si-Vit.Cand N-Si-Vit.L sorbents	179
3.55	Sorption isotherm models of Cu(II) by N-Si-Vit.Cand N-Si-Vit.L sorbents	180
3.56	Sorption isotherm models of Cd(II) by N-Si-Vit.Cand N-Si-Vit.L sorbents	181
3.57	Sorption isotherm models of Pb(II) by N-Si-Vit.Cand N-Si-Vit.L sorbents	182
3.58	Sorption isotherm models of Hg(II) by N-Si-Vit.Cand N-Si-Vit.L sorbents	183
3.59	Removal of metal ions from water matrices utilizing MES procedure by N-Si-Vit.C.	189
3.60	Removal of metal ions from water matrices utilizing MES procedure by N-Si-Vit.L.	189

List of Tables

1	CHAPTER (I) INTRODUCTION	1
1.1	Remarks of heavy metal treatment methods	7
1.2	Optimum conditions of operation and degradation efficiencies of ammonia by MW.	13
1.3	Influence of various parameters on MWPC.	28
1.4	Silane-coupling agents commonly used	44
1.5	List of nano-silica sorbents with abbreviations	56
2	CHAPTER (II) EXPERIMENTAL	57
2.1	Types of complexometric EDTA titrations of metal ions	58
2.2	Standard wavelength and working range of the tested metal ions by atomic absorption spectrophotometer	58
3	CHAPTER (III) RESULTS AND DISSCUSIONS	72
3.1	FT-IR peaks positions and their assignments for nano-silica and its modified forms	74
3.2	TGA Data of nanosilica sorbents	81
3.3	Surface area data of nanosilica sorbents	83
3.4	Effect of microwave heating time on the microwave-assisted sorption values of metal ions for N-Si-Gly and N-Si-Glu.	88
3.5	Effect of pH on the capacity values of different metal ions (μmol g ⁻¹) using microwave-assisted sorption technique.	92
3.6	Effect of sorbent dosage on the capacity values of different metal ions ($\mu mol\ g^{-1}$) using MAS technique	96
3.7	Langmuir and Freundlich constants.	101
3.8	Comparison with some other previously published works	102