EFFECT OF SOME PLANT GROWTH REGULATORS AND POTASSIUM SOURCES ON GROWTH, DEVELOPMENT AND NUTRIENT UPTAKE INPOTATO (Solanum tuberosum L.)

By

ALI SAID MOHAMED HASSEN ABO AL-NAGAA

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2006 M. Sc. Agric. Sc. (Plant physiology), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

in
Agricultural Sciences
(Plant Physiology)

Department of Agricultural Botany Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF SOME PLANT GROWTH REGULATORS AND POTASSIUM SOURCES ON GROWTH, DEVELOPMENT AND NUTRIENT UPTAKE INPOTATO (Solanum tuberosum L.)

By

ALI SAID MOHAMED HASSEN ABO AL-NAGAA

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2006. M. Sc. Agric. Sc. (Plant physiology), Ain Shams University, 2012.

This thesis for Ph.D. degree has been approved by:

Dr.	Emad El-Din Hassanein Abd El-Samad
	Associate Researcher Prof. of Vegetable Physiology, Agricultural
	and Biological Research Division, National Research Center.
Dr.	Ibrahim Seif Eldin Ibrahim Aly
	Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams
	University.
Dr.	Hatem Mohamed Ashour Abdel-Salam Associate Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University.
Dr.	Kawthar Aly Emam Rabie
	Prof. Emeritus of Plant Physiology, Faculty of Agriculture, Ain
	Shams University.

Date of Examination: 3/1 / 2019

EFFECT OF SOME PLANT GROWTH REGULATORS AND POTASSIUM SOURCES ON GROWTH, DEVELOPMENT AND NUTRIENT UPTAKE IN POTATO (Solanum tuberosum L.)

By

ALI SAID MOHAMED HASSEN ABO AL-NAGAA

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2006. M.Sc. Agric. Sc. (Plant physiology), Ain Shams University, 2012.

Under the supervision of:

Dr. Kawthar Aly Emam Rabie

Prof. Emeritus of Plant Physiology, Agricultural Botany Department, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Hatem Mohamed Ashour Abdel-Salam

Associate Prof. of Plant Physiology, Agricultural Botany Department, Faculty of Agriculture, Ain Shams University

ABSTRACT

Ali Said Mohamed Hassen Abo Al –Nagaa: Effect of Some Plant Growth Regulators and Potassium Sources on Growth, Development and Nutrient Uptake in Potato (*Solanum tuberosum* L.). Unpublished Ph.D. Thesis, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 2019.

Two field experiments were carried out at Ahmed Ourabi Agricultural cooperative Association, Cairo-Ismaellia desert road at Kalubia Governorate, Egypt, during winter seasons of 2013/2014, 2015/2016 and 2017/2018. The objective of this study was to evaluate the effect of plant growth regulators [paclobutrazol (PBZ) and mepiquat chloride (MC)] and potassium fertilizers [potassium sulphate (KC), foliar potassium (KF) and rock potassium (KR)] on potato plants growth and productivity.

The results illustrated that application with different sources of potassium (K) singly led to significant increase in plant height, number of branches/plant and leaf area/plant against its combination with growth regulators(GRs) and the reverse was true for shoot fresh and dry weights. Meantime ,there is no influence of K sources applied on number of tubers/plant. A significant increment in tubers number/plant, weight of tubers, tuber diameter and size was achieved with spraying growth regulators combined with K sources comparing with K fertilization treatments singly. It is clear from the interaction that KR+PBZ at 50 ppm achieved significantly positive response in growth characters which reflected on total yield of potato tubers. The values were about 68-75% against the control (KC) during the growing seasons.

The interaction between treatments had influence on the tuber quality aspect studied. Application of GRs led to absence the very small tubers, which diameter between 30-40 mm in both experiments, in addition to increase dry matter production as compared with the

application of K sources singly. The highest percentage of large tubers and dry matter concentration was achieved with KR+PBZ at 50ppm to reach 100% and 54.3-56.1% respectively, at harvest stage during the growing seasons. Meanwhile, application of potassium sulphate (KC) singly at rate of led to dominate small and smallest tubers and recorded the lowest dry matter concentration in the tubers. On the other hand, GRs (both rates) have a positive effect on total chlorophylls, concentration of N, crude protein, P and K, in addition to N,P and K uptake in shoot and tubers of potato plants, against the untreated plants in the three sampling dates (50,85 and 120 DAS). Apart from MC at 300 ppm either with KF or KR after 85 and 120 days from sowing, application of GRs increased the concentrations of starch and vitamin C in the tubers against the control treatment (without GRs) and the reverse was true for the concentrations of reducing sugars and total soluble phenols.

The data clearly showed that KR+PBZ at 50 ppm was the most efficient treatment, since it has a positive effect on growth, development, nutrients uptake, tubers quality and yield productivity of potato plant. While, KF+PBZ at 50 ppm and KR+MC at 150 ppm detected nearly equal influence and ranked as the second order.

Keywords: *Solanum tuberosum*, Potato, Plant growth regulators, Potassium sources, Rock potassium, Paclobutrazol, Mepiquat chloride, Growth and productivity.

ACKNOWLEDGEMENT

First of all, great thanks and gratitude be to Allah, Who guide me to this way and assist me in all my life. All words all feeling and praise will not be enough to thank Allah.

The author wishes to express his gratitude and indebtedness to **Dr. Kawthar Aly Emam Rabie, Professor Emeritus of Plant Physiology, Agric. Bot. Dept., Faculty of Agric., Ain Shams Univ.**, the main supervisor, who initially suggested the problem specially during the experimental course of study and during the preparation of this thesis and for her continuous encouragement, words are not enough to express how grateful, aim to her.

I wish to extend my appreciation and gratitude to **Dr. Hatem M. Ashour, Associate Prof. of Plant Physiology, Agric. Bot. Dept., Faculty of Agric., Ain Shams Univ.,** for his continuous guidance and effort which helping me to fully this work.

Thanks are also extended to **Dr. Moustafa Ali Amer, Professor Emeritus of Plant Physiology and Dr. Ibrahim Seif El Din Ibrahim Aly, Professor of Plant Physiology, Agric. Bot. Dept., Faculty of Agric., Ain Shams Univ.** and all members of the Agric. Bot. Dept., Faculty of Agric., Ain Shams Univ., for their encouragement and their willingness to help.

Last but not least thanks for **Eng. Mohasn**, for the facilities offered in the experimental farm at Ahmed Ourabi Agricultural cooperative Association, Cairo-Ismaellia desert road, Kalubia Governorate, Egypt.

Finally, I am very grateful to the sale of **my mother** (Allah yarhmha) for her encouragement and install ambition inside me, thanks to **my wife** for her kind help and effort to finish this work.

CONTENTS

	Pag
LIST OF TABLES	IV
LIST OF FIGURES	X
LIST OF ABBREVIATION	XV
INTRODUCTION	1
REVIEW OF LITERATURE	6
2.1.Plant growth regulators (PBZ and MC)	6
2.1.1.Effect on growth and yield	6
2.1.2.Effect on chemical components	16
2.2.Potassium sources	20
2.2.1.Effect on growth and yield	20
2.2.2.Effect on chemical components	29
MATERIAL AND METHODS	34
3.1.Treatments	36
3.1.1. Plant growth regulators	36
3.1.2. Potassium fertilization sources	36
3.2. Studied Parameters	37
3.2.1. Growth characters	37
3.2.2. Chemical analyses of potato plant	38
3.2.2.1. Determination of chlorophylls	38
3.2.2.2. Determination of minerals	39
3.2.2.2.1. Total nitrogen.	39
3.2.2.2. Total phosphorus	39
3.2.2.2.3. Total potassium.	39
3.2.2.3. Determinations of protein	39
3.2.2.4. Determination of total starch	39
3.2.2.5. Determination of reducing sugars	40
3.2.2.6. Determination of ascorbic acid	40
3.2.2.7. Determination of total soluble phenols	40
3.3. Soil determinations.	41
RESULTS	42

	Page
4.1. First experiment.	42
4.1.1. Growth characters and yield	42
4.1.1.1. Plant height	42
4.1.1.2. Number of branches.	44
4.1.1.3. Shoot fresh and dry weights	46
4.1.1.4. Total leaves area.	49
4.1.1.5. Tubers number	51
4.1.1.6. Tubers fresh weight	51
4.1.1.7. Tuber diameter	54
4.1.1.8. Tuber size	56
4.1.1.9. Total tubers yield.	58
4.1.1.10. Tuber quality parameters	60
4.1.1.10.1.Tuber grades	61
4.1.1.10.2. Tuber dry matter	63
4.1.2. Chemical constituents.	63
4.1.2.1. Potato shoot.	63
4.1.2.1.1. Total chlorophyll concentration.	63
4.1.2.1.2. N,P and K concentrations and uptake	68
4.1.2.1.2.1. Nitrogen and Crude protein.	68
4.1.2.1.2.2. Phosphorus	71
4.1.2.1.2.3. Potassium	71
4.1.2.2. Potato tubers.	73
4.1.2.2.1.Macronutrients (N,P&K) and crude protein	
concentrations	73
4.1.2.2.2. Starch concentration	77
4.1.2.2.3. Reducing sugars	77
4.1.2.2.4. Ascorbic acid (Vitamin C)	80
4.1.2.2.5. Total soluble phenols	81
4.2. Second experiment.	83
4.2.1. Growth characters and yield.	83
4.2.1.1. Shoot dry weight	83

	Page
4.2.1.2. Tubers number	85
4.2.1.3. Tubers fresh weight	85
4.2.1.4. Tubers dry weight	88
4.2.1.5. Tuber diameter	90
4.2.1.6. Tuber size	90
4.2.1.7. Total tubers yield.	93
4.2.1.8. Tuber quality parameters	93
4.2.1.8.1. Tuber grades	93
4.2.1.8.2. Tuber dry matter	95
4.2.2. Chemical constituents	99
4.2.2.1. Potato shoot.	99
4.2.2.1.1. Total chlorophylls	99
4.2.2.1.2. N,P and K concentrations and uptake	102
4.2.2.1.2.1.Nitrogen &Crude protein	102
4.2.2.1.2.2. Phosphorus& Potassium	107
4.2.2.2. Potato tubers	112
4.2.2.2.1. N, P and K concentrations and uptake	112
4.2.2.2.1.1. Nitrogen & Crude protein	112
4.2.2.2.1.2. Phosphorus	117
4.2.2.2.1.3. Potassium	121
4.2.2.2.2. Starch	123
4.2.2.2.3. Reducing sugars	126
4.2.2.2.4. Ascorbic acid (Vitamin C)	126
4.2.2.2.5. Total soluble phenols	130
DISCUSSION	132
SUMMARY	150
REFERENCES	160
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Pages
1	Physical and chemical analysis of the	
	experimental Soil	35
2	Chemical properties of water using in the	
	experimental farm of Ourabi operation	35
3	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on potato plant height (cm) during the	
	two sampling dates of the two seasons	43
4	Effect of three different sources of potassium (KC,	
	KF & KR) and two growth retardants (PBZ and	
	MC) treatments on number of branches/plant of	
	potato plants during the two sampling dates of the	
	two seasons	45
5	Effect of three different sources of potassium	
	(KC,KF & KR) and two growth retardants (PBZ	
	and MC) treatments on fresh weight (g /plant) of	
	potato shoot during the two sampling dates of the	
	two seasons	47
6	Effect of three different sources of potassium (KC,	
	KF & KR) and two growth retardants (PBZ and	
	MC) treatments on dry weight (g /plant) of potato	
	shoot during the two sampling dates of the two	
	seasons	48
7	Effect of three different sources of potassium (KC,	
	KF & KR) and two growth retardants (PBZ and	
	MC) treatments on total leaves area (cm ² /plant) of	
	potato plants in the 2 nd sample of the two	
	seasons	50
8	Effect of three different sources of potassium	

	(KC, KF & KR) and two growth retardants (PBZ and MC) treatments on number of potato tubers/plant during the three sampling dates of the two seasons	51
9	Effect of three different sources of potassium (KC,	31
	KF & KR) and two growth retardants (PBZ and	
	MC) treatments on mean of potato tuber weight	
	(g) during the three sampling dates of the two	
	seasons	53
10	Effect of three different sources of potassium (KC,	
	KF & KR) and two growth retardants (PBZ and	
	MC) treatments on mean of potato tuber diameter	
	(mm) during the three sampling dates of the two	
	seasons	55
11	Effect of three different sources of potassium	
	(KC, KF & KR) and two growth retardants (PBZ	
	and MC) treatments on mean of potato tuber size	
	(ml) during the three sampling dates of the two	
	seasons	57
12	Effect of three different sources of potassium	
	(KC,KF& KR) and two growth retardants (PBZ	
	and MC) on total potato tubers yield (t/fed) at	
	harvesting stage during the two seasons	59
13	Effect of different treatments on potato tuber	
	grades per plant in both seasons of the 1 st	
	experiment. (No. of replicates [plants] = four)	62
14	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on dry matter of potato tubers at	
	harvesting stage during the two seasons	63
15	Effect of chemical potassium (KC), foliar	
	-	

	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on total chlorophyll ,protein and	
	major elements (N, P and K) concentrations in	
	potato shoot in the 2 nd sample during the two	
	seasons	66
16	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on major elements (N, P and K)	
	uptake in potato shoot in the 2 nd sample during the	
	two seasons	71
17	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on protein and major elements (N, P	
	and K) concentrations in potato tubers at	
	harvesting stage during the two seasons	74
18	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on starch, sugar, vitamin C and	
	phenol concentrations in potato tubers at	
	harvesting stage during the two seasons	78
19	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on dry weight of potato shoot during	
	the growing season of the 2 nd experiment	84
20	Effect of three different sources of potassium	
	(KC,KF&KR) and two growth retardants (PBZ	
	and MC) treatments on number of potato tubers	

	/plant during the three sampling dates of the	86
0.1	growing season of the 2 nd experiment	80
21	Effect of three different sources of potassium	
	(KC,KF& KR) and two growth retardants (PBZ	
	and MC) treatments on mean potato tuber weight	
	(g) during the three sampling dates of the growing	
	season of the 2 nd experiment	87
22	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on dry weight of potato tuber during	
	the growing season of the 2 nd experiment	89
23	Effect of three different sources of potassium	
	(KC,KF&KR) and two growth retardants (PBZ	
	and MC) treatments on mean of potato tuber	
	diameter (mm) during the three sampling dates of	
	the growing season of the 2 nd experiment	91
24	Effect of three different sources of potassium	
	(KC,KF& KR) and two growth retardants (PBZ	
	and MC) treatments on mean of potato tuber size	
	(ml) during the three sampling dates of the	
	growing season of the 2 nd experiment	92
25	Effect of three different sources of potassium	
	(KC,KF& KR) and two growth retardants (PBZ	
	and MC) on total potato tubers yield (t/fed) at	
	harvesting stage in the 2 nd experiment	94
26	Effect of different treatments on potato tuber	
	grades per plant in both seasons of the 2 nd	
	experiment. (No. of replicates [plants] = ten)	96
27	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	

	applications on dry matter of potato tubers during	
	the growing season of the 2 nd experiment	97
28	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on total chlorophyll in potato leaf	
	during the growing season of the 2 nd experiment	100
29	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on crude protein and major element	
	(N) concentrations in potato shoot during the	
	growing season of the 2 nd experiment	103
30	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR), and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on major element (N) uptake in	
	potato shoot during the growing season of the 2 nd	
	experiment	106
31	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on major elements (P and K)	
	concentrations in potato shoot during the growing	
	season of the 2 nd experiment	108
32	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on major elements (P and K) uptake	
	in potato shoot during the growing season of the	111
22	2 nd experiment	111
33	Effect of chemical potassium (KC), foliar	

	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on crude protein and major element	
	(N) concentrations in potato tubers during the	
	growing season of the 2 nd experiment	113
34	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on major element (N) uptake in	
	potato tubers during the growing season of the 2 nd	
	experiment	114
35	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on major elements (P and K)	
	concentrations in potato tubers during the growing	
	season of the 2 nd experiment	118
36	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on major elements (P and K) uptake	
	in potato tubers during the growing season of the	
	2 nd experiment	120
37	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on starch and sugar concentrations in	
	potato tubers after 85 and 120 days from sowing	124
38	Effect of chemical potassium (KC), foliar	
	potassium (KF), rock potassium (KR) and growth	
	retardants (paclobutrazol and mepiquat chloride)	
	applications on vitamin C and phenol	