MORPHOLOGICAL AND PHYSIOLOGICAL STUDIES ON THE ROLE OF SOME BIOREGULATORS TO REDUCING WATER STRESS IN THYMUS VULGARIS L.

By REHAM EL-SAYED FARAG HASSAN

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2007 M.Sc. Agric. Sc. (Agricultural Botany), Ain Shams University, 2012

A thesis submitted in partial fulfillment

Of
the requirements for the degree of

in
Agricultural Sciences
(Agricultural Botany)

Department of Agricultural Botany Faculty of Agriculture Ain Shams University

Approval Sheet

MORPHOLOGICAL AND PHYSIOLOGICAL STUDIES ON THE ROLE OF SOME BIOREGULATORS TO REDUCING WATER STRESS IN THYMUS VULGARIS L.

By REHAM EL-SAYED FARAG HASSAN

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2007 M.Sc. Agric. Sc. (Agricultural Botany), Ain Shams University, 2012

This thesis for Ph.D. degree has been approved by: Dr. Mohamed Abd-Elaziz Nassar Prof. Emeritus of Agricultural Botany, Faculty of Agriculture, Cairo University. Dr. Sanaa Abdel Rahman Mostafa Zaghloul Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University. Dr. Ola Hussein Mohamed Associate Prof. of Agricultural Botany, Faculty of Agriculture, Ain Shams University. Dr. Said Awad Mohamed Shehata Prof. Emeritus of Plant Physiology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 6 /1 / 2019

MORPHOLOGICAL AND PHYSIOLOGICAL STUDIES ON THE ROLE OF SOME BIOREGULATORS TO REDUCING WATER STRESS IN THYMUS VULGARIS L.

By REHAM EL-SAYED FARAG HASSAN

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2007 M.Sc. Agric. Sc. (Agricultural Botany), Ain Shams University, 2012

Under the supervision of:

Dr. Said Awad Mohamed Shehata

Prof. of Plant Physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Ola Hussein Mohamed

Associate Professor of Agricultural Botany, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Reham El-Sayed Farag Hassan: Morphological and Physiological Studies on The Role of Some Bioregulators to Reducing Water Stress in *Thymus Vulgaris* L, Unpublished Ph.D. Thesis, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 2018.

Two pot experiments were conducted on the 17th and 19th of March of 2015 and 2016 respectively at the Experimental Farm, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Egypt to investigate the effect of foliar application of potassium citrate (KC, 1.63) or 3.26 mM), proline (Pro, 50 or 100 mM), putrescine (Put, 0.1 and 0.2 mM) and distilled water as control on thyme plants (*Thymus vulgaris* L) under water deficit conditions. Two irrigation levels according to the water holding capacity (WHC) were investigated; the well-watered plants were irrigated when the value of field capacity (FC) between 70-80% whereas; the water-stressed plants were irrigated when the value of FC between 30-40%. The results indicated that water stress caused significant $(P \le 0.05)$ decreases in the studied growth parameters including the fresh and dry weights for shoot and root whereas, there was a significant increase in shoot/root dry matter ratio. Moreover water stress induced multiple significant changes in the biochemical constituents including the photosynthetic pigments (Chl a, Chl b, Chl a/b ratio and carotenoids), reactive oxygen species as indicated by increasing the concentration of H₂O₂ and the rate of lipid peroxidation in term of malondialdehyde (MDA), osmolytes (soluble sugars, proline and free amino acids (FAA)), total soluble phenols and phenolic related enzymes (Phenylalanine ammonia-lyase (PAL). Polyphenol oxidase (PPO), and peroxidase (POD)) Furthermore, water deficit caused several changes at the morphological and anatomical levels of the thyme plants.

Water stress induced multiple significant changes in the morphoanatomical characteristics. Drought stress changed the orientation of leaves on the stem. The midvein ground tissue differentiated into additional layers of mesophyll toward the lower surface as compared to parenchymatous cells in the unstressed leaves. Water stress led to significant ($P \le 0.05$) decreases in the cross section area, lamina thickness, palisade tissue area, spongy tissue area, vascular tissue area, number of xylem vessels and xylem diameter in the leaf tissues of thyme plants exposed to the limited irrigation level compared to those that have received sufficient water supply. Whereas, water stress induced significant ($P \le 0.05$) increase in the cuticle thickness in the water-stressed plants compared to the well-irrigated ones. The results indicated that foliar applications improved these anatomical characteristics. Regarding the stem, Drought causes a well-developed endodermis with noticeable casparian bands on the radial walls as presented compared to the unstressed control. The patches of Collenchyma have more lignified walls as similar as the vascular cylinder cells in stressed plants. Stems under drought stress have small diameter of vascular cylinders, while this cylinders have more lignification. The results indicated that, cross section area, vascular tissue area, xylem area and xylem vessel diameter of the stem of the thyme plants were decreased significantly ($P \le 0.05$) under water-stressed conditions, these decreases reached 31.8, 29.6, 24.0 and 48.8% in the previous traits respectively compared to those that have received sufficient water supply. The different foliar applications improved the investigated anatomical stem characteristics of thyme plant except xylem vessel diameter with Pro at 50 mM or Put at 0.1 mM which reduced it insignificantly ($P \le 0.05$) compared to the untreated control. In this regard, the treatment of Put at 0.2 mM gave the highest significant increases in all studied stem anatomical parameters compared to the other foliar treatments.

The foliar applications of KC, (1.63 or 3.26 mM), proline (50 or 100 mM) and putrescine (Put, 0.1 and 0.2 mM) reduced the negative effects of water stress with different responses related to the various studied morphological and biochemical attributes. In this context, it was

observed that the treatments of proline (Pro) at 100 mM and Put at 0.2 mM could be considered the more effective treatments in enhancing and inducing the adaptive mechanism/s to drought stress in thyme plants.

Key words: Thyme, Anatomical studies, Citrate potassium, Proline, Putrescine, Biochemical constituents, Water stress.

ACKNOWLEDGMENT

First and foremost, I would like to thank "Allah" the only God Almighty for giving me the patient, strength and ability to finish and complete this research study satisfactorily. Without his blessings, this achievement would not be possible.

Highly appreciation and deepest thanks to **Prof. Dr. Said Awad Shehata,** Emeritus Prof. of plant physiology, Dept. of Agric. Botany, Fac. of Agric. Ain Shams University (main supervisor), for his kindness, continuous encouragement, advice, faithful attitude and support during the preparation of this research study.

I wish to express my deep appreciation and sincere gratitude to **Dr. Ola Hussein Mohamed,** Associate professor of Agricultural Botany, Dept. of Agric. Botany, Ain Shams University, for her excellent guidance, advice and valuable assistance during the performance of this work.

Deepest gratitude is also extended to **all members and colleagues** in Dept. of Agric. Botany, Fac. of Agric., Ain Shams University, for their encouragement.

Special thanks must be extended to my beloved husband **Dr. Mohamed Farag** Associate Professor of Plant Physiology, Dept. of Agric. Botany, Fac. of Agric. Ain Shams University for his supporting encouragement and love.

I would like to express my special thanks to my both sons, **Omar** and **Abdelrahman**; and **all members of my family** for their continuous help and prayers during this work. Without the support of my own family members, I would never have been able to aspire for this level of education.

CONTENTS

LIST OF TABLES
LIST OF FIGURES.
LIST OF PLATES.
LIST OF ABREVIATION
1. INTRODUCTION
2. REVIEW OF LITERATURE
2.1. Thyme as a medicinal and aromatic plant
2.2. Effect of drought stress on medicinal and aromatic plants
2.3. Morpho-anatomical parameters
2.3.1. Under normal conditions
2.3.2. Under water stress conditions
2.4. Effect of potassium citrate on drought stressed plant
2.5. Effect of citric acid on drought tolerance
2.6. Effect of proline on drought drought stressed plant
2.7. Effect of polyamines on drought stressed plant
3. MATERIALS AND METHODS
3.1. Plant materials and treatments
3.2. The Experiment layout
3.3. Date of treatments.
3.4. Sampling date and growth parameters
3.5. Biochemical constituents.
3.5.1. Reactive oxygen species (ROS)
3.5.1.1. Hydrogen peroxide (H ₂ O ₂) concentration
3.5.1.2. Lipid peroxidation.
3.5.2. Photosynthetic pigments
3.5.3. Osmolytes.
3.5.3.1. Total soluble sugars
3.5.3.2. Proline
3.5.3.3. Free amino acids

	Page
3.5.4. Total soluble phenols	25
3.5.5. Enzyme assays	25
3.5.5.1. Phenylalanine ammonia-lyase (PAL)	25
3.5.5.2. Polyphenol oxidase (PPO)	26
3.5.5.3. Peroxidase (POD)	26
3.6. Anatomical studies	26
3.7. Statistical analysis	27
4. RESULTS AND DISCUSSION	28
4.1. Changes in growth parameters	28
4.2. Changes in Reactive oxygen species (ROS) and lipid	37
peroxidation	
4.3. Changes in photosynthetic pigments	40
4.4. Changes in the organic osmolytes	47
4.5. Changes in total soluble phenols	52
4.6. Enzyme activities	55
4.6.1. Phenylalanine ammonia-lyase (PAL)	55
4.6.2. Polyphenol oxidase (PPO)	57
4.6.3. Peroxidase (POD)	58
4.7. Morpho-Anatomical Studies	61
4.7.1. Morpho-anatomical description of thyme plant under	61
unstressed conditions	
4.7.2. Morpho- anatomical changes of thyme plant as affected by	64
irrigation level and different foliar applications	
4.7.2.1. Leaf	64
4.7.2.2. Stem	84
5. SUMMARY	95
6. REFERENCES	104
ARABIC SUMMARY	

LIST OF TABLES

	Page
Description of the studied of treatments	19
Water requirements for thyme plants as indicated by	
measuring soil moisture using a tensiometer at two	
different levels of irrigation	21
Physical and chemical analysis of the experimental	
soil	22
Effect of foliar application of potassium citrate (KC),	
proline (Pro) and putrescine (Put) on Shoot fresh	
weight (g) of thyme plant at 60 days after planting	
under two different irrigation levels (combined	
analysis of 2015 and 2016)	39
Effect of foliar application of potassium citrate (KC),	
(g) of thyme plant at 60 days after planting under two	
different irrigation levels (combined analysis of 2015	
and 2016)	30
Effect of foliar application of potassium citrate (KC),	
proline (Pro) and putrescine (Put) on root fresh weight	
(g) of thyme plant at 60 days after planting under two	
different irrigation levels (combined analysis of 2015	
and 2016)	31
Effect of foliar application of potassium citrate (KC),	
proline (Pro) and putrescine (Put) on root dry weight	
(g) of thyme plant at 60 days after planting under two	
different irrigation levels (combined analysis of 2015	
and 2016)	32
Effect of foliar application of potassium citrate (KC),	
proline (Pro) and putrescine (Put) on shoo/root dry	
matter ratio of thyme plant at 60 days after planting	
under two different irrigation levels (combined	33
	Water requirements for thyme plants as indicated by measuring soil moisture using a tensiometer at two different levels of irrigation

No		P
	analysis of 2015 and 2016)	
9	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on H ₂ O ₂ (µ mol.g-1.	
	f.wt.) of thyme leaves at 60 days after planting under	
	two different irrigation levels (combined analysis of	
	2015 and 2016)	
10	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on malondialdehyde	
	(MDA) (n mol. g-1. F.wt) of thyme leaves at 60 days	
	after planting under two different irrigation levels	
	(combined analysis of 2015 and 2016)	
11	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on chlorophyll a	
	(mg. g-1. f.wt.) of thyme leaves at 60 days after	
	planting under two different irrigation levels	
	(combined analysis of 2015 and 2016)	
12	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on chlorophyll b	
	(mg. g-1. f.wt.) of thyme leaves at 60 days after	
	planting under two different irrigation levels	
	(combined analysis of 2015 and 2016)	
13	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on chlorophyll a/b	
	ratio of thyme leaves at 60 days after planting under	
	two different irrigation levels (combined analysis of	
	2015 and 2016)	
14	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on carotenoids (mg.	
	g-1. f.wt.) of thyme leaves at 60 days after planting	
	under two different irrigation levels (combined	
	analysis of 2015 and 2016)	

No		Page
15	Effect of foliar application of potassium citrate (KC), proline (Pro) and putrescine (Put) on total soluble sugars (mg. g ⁻¹ . f.wt.) of thyme leaves at 60 days after planting under two different irrigation levels (combined analysis of 2015 and 2016)	48
16	Effect of foliar application of potassium citrate (KC), proline (Pro) and putrescine (Put) on proline of thyme leaves at 60 days after planting under two different irrigation levels (combined analysis of 2015 and	
17	Effect of foliar application of potassium citrate (KC), proline (Pro) and putrescine (Put) on free amino acids (mg. g ⁻¹ . f.wt.) of thyme leaves at 60 days after planting under two different irrigation levels	49
18	(combined analysis of 2015 and 2016)	50 54
19	Effect of foliar application of potassium citrate (KC), proline (Pro) and putrescine (Put) on phenylalanine ammonia-lyase, "PAL" (μ mol.h ⁻¹ . mg ⁻¹ protein) of thyme leaves at 60 days after planting under two different irrigation levels (combined analysis of 2015	
20	and 2016)	56
	2016)	59

No		Page
21	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on peroxidase	
	"POD" (Unit. min ⁻¹ . mg ⁻¹ protein) of thyme leaves at	
	60 days after planting under two different irrigation	
	levels (combined analysis of 2015 and 2016)	60
22	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on cross section	
	area (mm ²) of thyme leaves at 60 days after planting	
	under two different irrigation levels	67
23	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on lamina thickness	
	(µm) of thyme leaves at 60 days after planting under	
	two different irrigation levels	68
24	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on cuticle thickness	
	(µm) of thyme leaves at 60 days after planting under	
	two different irrigation levels	69
25	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on palisade tissue	
	area (mm ²) of thyme leaves at 60 days after planting	
	under two different irrigation levels	70
26	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on spongy tissue	
	area (mm ²) of thyme leaves at 60 days after planting	71
	under two different irrigation levels	71
27	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on vascular tissue	
	area (µm²) of thyme leaves at 60 days after planting	
	under two different irrigation levels	72
28	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on number of	73

No		Page
	xylem vessels of thyme leaves at 60 days after	
	planting under two different irrigation levels	
29	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on xylem diameter	
	(µm) of thyme leaves at 60 days after planting under	
	two different irrigation levels	74
30	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on cross section	
	area (mm ²) of thyme stems at 60 days after planting	
	under two different irrigation levels	87
31	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on vascular tissue	
	area (mm ²) of thyme stems at 60 days after planting	
	under two different irrigation levels	88
32	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on xylem area	
	(mm ²) of thyme stems at 60 days after planting under	
	two different irrigation levels	89
33	Effect of foliar application of potassium citrate (KC),	
	proline (Pro) and putrescine (Put) on xylem vessel	
	diameter (µm)of thyme stems at 60 days after	
	planting under two different irrigation levels	90

VIII

LIST OF FIGURES

No.		Page
1	The potential functions of proline and its metabolism	
	in stress protection C.F. (Liang et al.	
	2013)	14
2	Simplified model for the integration of polyamines	
	with ABA, ROS (H ₂ O ₂), NO, Ca ² + homeostasis and	
	ion channel signalling in the abiotic stress response	
	C.F. (Alcázar et al. 2010)	17
3	Calibration of tensiometer to determine the water	
	holding capacity (% WHC) of the experimental	
	soil	20