

Management of Complex Distal Femur Fractures: Comparative Study between Ilizarov External Fixation and Double Plating

Thesis

Submitted for Partial Fulfilment of M.D degree in Orthopedic Surgery

By

Eslam Nasr Abou Risha

MB. BCh.,
M. Sc of Orthopaedic Surgery

Under supervision of

Professor Dr. Mootaz Fouad Thakeb

Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Ayman Hussien Gooda

Assistant Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

Assist.Prof.Dr.Tamer Abd El-Maguid Fayyad

Assistant Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

Dr. Mohamed Ahmed El-Kersh

Lecturer of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most
Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor Dr. Mootaz Found Thakeb**, Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. **Prof. Dr. Ayman Hussien Gooda**, Assistant Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Assist. Prof. Dr. Tamer Abd El Maguid Fayyad & Dr. Mohamed Ahmed El-Kersh, Assistant Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to Mr. Maif Ibarhim Elfadel, general director of algaryia alolyia hospital, for his cooperation in this work.

Eslam Nasr Abou Risha

List of Contents

Title	Page No.	
List of Tablesi		
List of Figures		
List of Abbreviations	vi	
Introduction	1	
Aim of the Study	5	
Review of Literature	6	
Anatomy	6	
Biomechanics	20	
Mechanism of Injury	29	
 Complications 	31	
Classification	33	
• Diagnosis	37	
■ Treatment	39	
Patients and Methods	62	
Results	81	
Case Presentation	103	
Discussion	122	
Summary	135	
Conclusion	137	
References	138	
Arabic Summary		

List of Tables

Table No.	Page No.
Table (1):	Smoking
Table (2):	Associated fractures
Table (3):	Classification86
Table (4):	Blood loss during operation
Table (5):	Time till Partial weight bearing
Table (6):	Time till Full weight bearing90
Table (7):	Time till radiological healing
Table (8):	Total ROM91
Table (9):	Pain
Table (10):	Alignment, A_P stability and Medial lateral stability93
Table (11):	Knee society score94
Table (12):	Knee society score grading
Table (13):	Other complication98
Table (14):	Correlation between Knee society score and others items
Table (15):	Correlation between age with healing and knee society score
Table (16):	Correlation between sex with healing and knee society score
Table (17):	Comparison of ilizarov results with those in literature 102
Table (18):	Comparison of double plating results with those in literature

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Gross Bony Features of the femur	6
Figure (2):	Schematic drawing of the distal femur	7
Figure (3):	Gross bony features of the femur	10
Figure (4):	Anterior view (left). Posterior view group of the thigh	
Figure (5):	Show the anatomical safe zones of wires and half pins in the femur at dif	
Figure (6):	Cut 1 of the anatomical cuts in the left	femur 14
Figure (7):	Cut 2 of the anatomical cuts in the left	femur 15
Figure (8):	Cut 3 of the anatomical cuts in the left	femur 16
Figure (9):	Cut 4 of the anatomical cuts in the left	femur 17
Figure (10):	Cut 5 of the anatomical cuts in the left	femur 18
Figure (11):	The usual deformity occurring with fracture of the femur.	
Figure (12):	The AO classification of the distal fem	noral fractures 34
Figure (13):	Neer classification of distal femoral en	ad 35
Figure (14):	Seinsheimer classification of fructure femur	<u> </u>
Figure (15):	Lateral approach to the distal femur	43
Figure (16):	Osteotomy of the tibial tubercle	44
Figure (17):	Anterolateral approach to the distal fe is a medial para-patellar arthroto dislocation of the patella	my and lateral

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (18):	Medial approach	46
Figure (23):	The condylar buttress plate	50
Figure (19):	The 95-degree angled blade plate	51
Figure (21):	Dynamic Condylar Screw (DCS)	52
Figure (21):	A hybrid locking plate hole allow locking screw or a conventional cor. The conical thread of the locking sengages the threaded plate hole to couple (Right).	tical screw (Left). screw head which produce a rigid
Figure (22):	A distal femoral locking compression final bone-plate construct with multipangle screws (Right).	ple condylar fixed
Figure (24):	Diagram for spanning external fixator	r59
Figure (25):	Comminuted fracture distal femur external fixator.	
Figure (26):	Showing distal femoral ring with tens	sioned olive wires70
Figure (27):	Showing the assembled Ilizarov fram	e71
Figure (28):	Smoking.	83
Figure (29):	Associated upper limb fractures in for fracture managed by K-wires	
Figure (30):	Classification	87
Figure (31):	Blood loss during operation	88
Figure (32):	Total ROM.	91
Figure (33):	Knee society score.	95

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (34):	Case of plate failure	97
Figure (35):	Correlation between partial weight society score	_
Figure (36):	Correlation between healing and kne	ee society score 100
Figure (37):	Correlation between full weight society score	
Figure (38):	X-ray and C.T scan show supracond C2	•
Figure (39):	Case No. 19 postoperative follow u ROM, B,C) X-ray AP-Lateral	
Figure (40):	X-ray AP and lateral view of distal thealing.	
Figure (41):	Clinical photo of case No. 19, A) Paknee full extension, B) Knee flexation	<u> </u>
Figure (42):	A) X-ray distal femur show distal B) Coronal cuts of CT, C) 3D recons	
Figure (43):	Postoperative x ray	107
Figure (44):	X-ray AP and lateral view of distal month.	
Figure (45):	x-ray after removal of frame	108
Figure (46):	Clinical photo of case No. 9 after ren	moval of Ilizarov 109
Figure (47):	A) X-ray showing fracture C2 distal fe cuts.	
Figure (48):	A,B) Clinial lateral approach of d Intraoperative C-arm	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (49):	X-ray postoperative	112
Figure (50):	2 weeks after starting partial weight be	earing
Figure (51):	6 months postoperative.	113
Figure (52):	Patient standing and knee flexion	114
Figure (53):	A,B) X-ray showing fracture C3 dista showing fracture C3 distal femur	
Figure (54):	X-ray postoperative	117
Figure (55):	1 months postoperative.	118
Figure (56):	6 months postoperative	118
Figure (57):	X-ray and CT showing fracture C2 dis	tal femur119
Figure (58):	Postoperative x-ray	120
Figure (59):	3 months postoperative	120
Figure (60):	6 months postoperative	
Figure (61):	Patient flexing and extending the knee	

List of Abbreviations

Abb. Full term

DCP : Dynamic compression plate

DCS : Dynamic condylar screw

FD : Falling down

FFH : Falling from height

LC-DCP : Limited contact dynamic compression plate

ROM : Range of motion

RTA : Road traffic accident

W : Week

ORIF : Open reduction internl fixation

PC-Fixator : Point contect fixator

LCP : Locking compression plate

INTRODUCTION

Fractures of the distal femur are complex injuries that can be difficult to manage and may result in long term disability and prolonged morbidity. They comprise 4-6% of all femoral fractures. They occur in a bimodal distribution: 15-50 years of age, predominantly in males, sustaining high-energy trauma, and above 50 years of age predominantly in females, with osteoporosis, who sustain relatively low energy trauma. Osteoporosis leads to comminution and may pose problems for fixation. Eighty-five percent of distal femoral fractures occur above 50 years. (4)

Three main problems are commonly observed in these fractures. First, adequate exposure of articular surface, particularly of medial femoral condyle and coronal plane fractures is exhausting. Second, the standard implants used for other types of distal femoral fracture such as the condylar blade plate and supracondylar nails are not helpful for articular surface reduction and fixation. Third, in setting of medial comminution and short distal segment, there is high incidence of loss of fixation and varus collapse.⁽⁵⁾

Various treatment options for comminuted or unstable fractures of the distal femur were proposed, including double

plating, and anatomically contoured plates⁽⁵⁾. With advances in fracture care were applied to these difficult injuries, so clinical results improved. First, indirect reduction and improved maintenance of the fracture biology was popularized by Mast et al and others. Second, improvement in implant design occurred, leading to fixed angle plates such as the 95° angle blade plate and dynamic condylar screw. These fixed-angle implants impart a measure of stability to plate fixation in this area not previously available. In particular, they resist relative shortening of the medial side that may result in varus deformity ⁽⁶⁾

Many different fixation methods have been described including condylar buttress plate and retrograde supra-condylar inter-locking nail. The superior results that have been obtained with these devices in fractures of the distal part of the femur that do not have major condylar comminution have made them the standard of care for the management of these injuries⁽⁷⁾.

Several fracture patterns occur in the most distal part of the femur, however, for which these devices cannot be effectively used. Ninety-five degree blade-plates and screw plates necessitate a minimum of three to four centimetres of intact bone in the distal part of the femur for adequate purchase of the condylar fragment. All of these implants are therefore contraindicated in patients who

have a very distal supracondylar fracture of the femur or fracture with marked comminution of the condyles⁽⁸⁾.

The condylar buttress plate has been widely used in such patients because of the surgeon's freedom to insert multiple cancellous-bone screws selectively into major condylar fragments for fixation of the fracture. Unfortunately, the condylar buttress plate may provide insufficient fixation of certain comminuted fractures, especially distal fractures that have fragmentation of the medial cortex of the femur or segmental loss of bone. (9)

Muller et al. proposed treatment of low transcondylar fractures having medial comminution and loss of medial cortex, with a lateral condylar buttress plate combined with a medial buttress plate and bone grafting. The advantage of applying double plating is complete and anatomical reconstruction of these severe injuries, facilitation of preliminary K-wire fixation from all directions around the distal end of femur, comfortable application of the medial plate, ideal fixation of medial and lateral Hoffa fractures, complete grafting of bony defects at all locations with good impaction, addressing associated internal knee derangement whenever possible, lower incidence of suprapatellar area adhesions, and uncomplicated wound healing. It will also be highly valuable in revision surgery after implant failure and nonunion of C3-type injuries, and in addressing comminuted

distal femur fracture combined with ipsilateral displaced tibial plateau fractures. (10)

The role of external fixation in the treatment of distal femoral fractures is either limited to temporary fixation, before formal reconstruction is possible, or as a definitive fixation in some complex fractures. Like minimally invasive techniques, the use of external fixation allows stabilisation without extensive soft tissue disruption, a shorter operating time, low blood loss, minimal surgical exposure, the lack of periosteal stripping with possible quicker healing of the fracture, and greater mechanical stability than with a mono lateral external fixator. (11)

With the Ilizarov system the diverging olive wires offer good stability and a firm compression effect on the condyles. Tensioned wires of small diameter gave sufficient stability, even in osteoporotic bone. (12)

AIM OF THE STUDY

This is a prospective randomized comparative clinical study to evaluate the efficacy, advantages and disadvantages of open reduction and internal fixation using double plating in comparison to Ilizarov fixation in the management of highly comminuted unstable distal femoral fractures.